Maple-assisted derivation of recurrence for A181252

Robert Israel

2 Apr 2020
There are $2^{9}=512$ possible rows. We enumerate them so that row i consists of the binary digits of $t-1$ (with leading 0 's included as needed).

Consider the 512×512 transition matrix T with entries $T_{i j}=1$ if the rows of a 2×9 sub-array could be in configurations i and configuration j, and 0 otherwise. The following Maple code computes it.

```
[> for i from 1 to 512 do Configs[i]:= convert(2^9+i-1,base,2)[1..9]
    od:
> Compatible:= proc(i,j)
    if `and` (seq(evalb(Configs[i][k] + Configs[i][k+1] + Configs[j]
    [k]+Configs[j][k+1] < 4), \(k=1 . .8)\) ) then 1 else 0 fi
    end proc:
    \(\mathrm{T}:=\) Matrix \((512,512\), Compatible) :
```

Thus for $n \geq 1 \quad a(n)=v^{T} T^{n-1} v$ where v is a column vector with all entries 1 .
[> v:= Vector $(512,1)$:
To check, here are the first few entries of our sequence. For future use, we pre-compute more $T^{n} u$ than we need.

```
>> TV[0]:= v:
    for nn from 1 to 150 do TV[nn]:= T . TV[nn-1] od:
    seq(v^%T . TV[n],n=0..23);
512, 169209, 61986457, 22161786304, 7969215344753, 2861765993703849,
    1027999596778673856, 369248337357375835969, 132633131268024896655873,
    47641303155727829675539968, 17112587585474467714330327353,
    6146779451170285748070586194193, 2207901031429162144096022660047872,
    793070084470057302384087155377692617,
    284867913890868281060496009223548603177,
    102323527128117748231683605598645592696000,
    36754241861857942427618829272595113039990337,
    13201991103089617015868946418191543366328499257,
    47421075842867280662386545985555598612166175562176,
    1703347939359914455191399817639020500175376703279249,
    611836435794344642814998651901513812148245981026094097,
    219769440826134343472025034384093298118025874905674197504,
    78940390430209402988161326956102126571047543727131812487561,
    28355103502328276775783627431590611233398261842020833876409633
```

The recurrence shows up as a linear dependence among $T^{n} v$. We gather these as columns of a matrix L, and stop when it has less than full column rank.
$\lceil\mathrm{L}:=\mathrm{v}:$
for n from 1 do $\mathrm{L}:=\langle\mathrm{L} \mid \mathrm{TV}[\mathrm{nn}]\rangle$;
if LinearAlgebra:-Rank(L) < nn+1 then printf("Success at n= \%d\n",nn); break fi; od:
Success at $n=48$
[The recurrence can then be found from the null space of the matrix L.
P:= LinearAlgebra:-NullSpace (L) [1]:
This is the recurrence:

$$
\begin{aligned}
& >\text { recurrence: }=\operatorname{sort}(a(n)=\text { solve(add (P[i]*a(n+i-49), } i=1 \ldots 49), a(n)) \text {, } \\
& \text { [seq(a(n-i), i=0. .49)]); } \\
& \text { recurrence }:=a(n)=238 a(n-1)+47314 a(n-2)-753400 a(n-3)-233197418 a(n \\
& -4)+4640749138 a(n-5)+445768132358 a(n-6)-15947750747086 a(n-7) \\
& -166397080885738 a(n-8)+16044964361788296 a(n-9) \\
& -232268164267011902 a(n-10)-1259342300696935690 a(n-11) \\
& +56703476089033781841 a(n-12)-175163843594441853916 a(n-13) \\
& -6158486425988745282892 a(n-14)+37828515864772141827536 a(n-15) \\
& +426730518403164436524924 a(n-16)-3187764949147877154239276 a(n-17) \\
& -22263015848318609094872172 a(n-18)+156817786076227057766175044 a(n \\
& -19)+928402921982255234672429452 a(n-20) \\
& -4732733396403067821956407920 a(n-21) \\
& -29411828959052712955794937564 a(n-22) \\
& +81383986022203958050802246732 a(n-23) \\
& +635269522936784233210087183281 a(n-24) \\
& -599879731383151109663500771338 a(n-25) \\
& -8443802805789621505270613872518 a(n-26) \\
& -1254953806327313941362136762072 a(n-27) \\
& +66942501780939437412602093124046 a(n-28) \\
& +43748051598047626043299145788986 a(n-29) \\
& -345972425459159767821217962670458 a(n-30) \\
& -279451872740517323160418400653014 a(n-31) \\
& +1261296152458153574908530105330750 a(n-32) \\
& +882589876903507307806480248540648 a(n-33) \\
& -3352816000524260245832271794017350 a(n-34) \\
& -1343294873274359177108950077340002 a(n-35) \\
& +6296023406954446417610451728434143 a(n-36) \\
& +87355205960569929562089007318104 a(n-37) \\
& -7455787668810085037129172828741600 a(n-38) \\
& +2791482728098756463529553428371712 a(n-39) \\
& +4228172599624392603097534465319040 a(n-40) \\
& -3277612624942382391365575708802880 a(n-41) \\
& -181873431853321055758500253305600 a(n-42) \\
& +741628402902875277367457752166400 a(n-43) \\
& -105194093277546086438275006464000 a(n-44) \\
& -59902648177113781255816151040000 a(n-45)
\end{aligned}
$$

$$
\begin{aligned}
& +10650559846199432301898629120000 a(n-46) \\
& +1806046600239285875968573440000 a(n-47) \\
& -174135216999916792656691200000 a(n-48)
\end{aligned}
$$

