Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #116 Jun 12 2023 02:36:57
%S 1,3,11,55,355,2807,26259,283623,3473315,47552791,719718067,
%T 11932268231,215053088835,4186305575415,87534887434835,
%U 1956680617267879,46561960552921315,1175204650272267479,31357650670190565363,881958890078887314567,26078499305918584929155,808742391638178302137783
%N Sum_{j>=1} j^n*2^j/binomial(2*j,j) = r_n*Pi/2 + s_n with integer r_n and s_n; sequence gives s_n.
%C In the references, the infinite series is S_n(2) = A014307(n+1)*Pi/2 + A180875(n) for n >= 1 (and S_0(2) is not defined). - _Petros Hadjicostas_, May 14 2020
%H Seiichi Manyama, <a href="/A180875/b180875.txt">Table of n, a(n) for n = 0..423</a>
%H F. J. Dyson, N. E. Frankel and M. L. Glasser, <a href="http://arxiv.org/abs/1009.4274">Lehmer's Interesting Series</a>, arXiv:1009.4274 [math-ph], 2010-2011; see Table IV on p. 14.
%H F. J. Dyson, N. E. Frankel and M. L. Glasser, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.120.02.116">Lehmer's interesting series</a>, Amer. Math. Monthly, 120 (2013), 116-130; see Table 2.
%H D. H. Lehmer, <a href="https://www.jstor.org/stable/2322496">Interesting series involving the central binomial coefficient</a>, Amer. Math. Monthly, 92(7) (1985), 449-457.
%H Feng Qi and Mark Daniel Ward, <a href="https://arxiv.org/abs/2110.08576">Closed-form formulas and properties of coefficients in Maclaurin's series expansion of Wilf's function</a>, arXiv:2110.08576 [math.CO], 2021.
%F a(0)=1; if n>=1, then a(n) = a(n-1) + 1 + Sum_{m=1..n} binomial(n,m)*a(n-m). - _Detlef Meya_, Jan 22 2018
%F E.g.f.: 2*(arcsin(exp(x/2)/sqrt(2)) - Pi/4) * sqrt(exp(x)/(2-exp(x))^3) + exp(x)/(2-exp(x)). - _Seiichi Manyama_, Oct 21 2019
%F a(n) ~ Pi * n^(n+1) / (sqrt(2) * exp(n) * (log(2))^(n + 3/2)). - _Vaclav Kotesovec_, Oct 22 2019
%F E.g.f.: d/dx (f(x) * Integral f(x) dx), where f(x) = sqrt(exp(x)/(2-exp(x))), cf. A014307. - _Seiichi Manyama_, Oct 22 2019
%p f := n -> sum(j^n*(j!)^2*2^j/(2*j)!, j = 1..infinity):
%p seq(f(n), n = 0..5); # gives
%p # [1+(1/2)*Pi, 3+Pi, 11+(7/2)*Pi, 55+(35/2)*Pi, 355+113*Pi, 2807+(1787/2)*Pi].
%t Table[Expand[FunctionExpand[FullSimplify[Sum[j^n*2^j/Binomial[2*j, j], {j, 1, Infinity}]]]][[1]], {n, 0, 20}] (* _Vaclav Kotesovec_, May 14 2020 *)
%o (PARI) N=20; x='x+O('x^N); f=sqrt(exp(x)/(2-exp(x))); Vec(serlaplace(deriv(f*intformal(f)))) \\ _Seiichi Manyama_, Oct 22 2019
%o (Python) # An alternative version of the sequence starts (for n >= 0):
%o # 0, 1, 3, 11, ..., or in terms of the approximation: [(1/2)*Pi, 1+(1/2)*Pi,
%o # 3+Pi, 11+(7/2)*Pi, ...]. Similar to the formula of _Detlef Meya_ above, the
%o # sequence then can be computed (without a special initial case) as:
%o from functools import cache
%o from math import comb as binomial
%o @cache
%o def a(n): return n + sum((binomial(n, j) - 1) * a(n - j) for j in range(1, n))
%o print([a(n) for n in range(23)]) # _Peter Luschny_, Jun 09 2023
%Y The values of r_n give A014307.
%Y Cf. A000629, A129063.
%K nonn,easy
%O 0,2
%A _Jonathan Vos Post_, Sep 23 2010
%E Attribution corrected by _M. Lawrence Glasser_, Sep 25 2010
%E Provided a better definition following a suggestion from _Herb Conn_. - _N. J. A. Sloane_, Feb 08 2011
%E Missing a(15) inserted by _Seiichi Manyama_, Oct 20 2019