login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180874 Lassalle's sequence connected with Catalan numbers and Narayana polynomials. 12

%I #63 Apr 24 2020 02:09:27

%S 1,1,5,56,1092,32670,1387815,79389310,5882844968,548129834616,

%T 62720089624920,8646340208462880,1413380381699497200,

%U 270316008395632253340,59800308109377016336155,15151722444639718679892150,4359147487054262623576455600

%N Lassalle's sequence connected with Catalan numbers and Narayana polynomials.

%C Defined by the recurrence formula in Theorem 1, page 2 of Lasalle.

%C From _Tom Copeland_, Jan 26 2016: (Start)

%C Let G(t) = Sum_{n>=0} t^(2n)/(n!(n+1)!) = exp(c.t) be the e.g.f. of the aerated Catalan numbers c_n of A126120.

%C R = x + H(D) = x + d/dD log[G(D)] = x + D - D^3/3! + 5 D^5/5! - 56 D^7/7! + ... = x + e^(r. D) generates a signed, aerated version of this entry's sequence a(n), (r.)^(2n+1) = r(2n+1) = (-1)^n a(n+1) for n>=0 and r(0) = a(0) = 0, and is, with D = d/dx, the raising operator for the Appell polynomials P(n,x) of A097610, where P(n,x) = (c. + x)^n = Sum{k=0 to n} binomial(n,k) c_k x^(n-k) with c_k = A126120(k), i.e., R P(n,x) = P(n+1,x).

%C d/dt log[G(t)] = e^(r.t) = e^(q.t) / e^(c.t) = Ev[c. e^(c.t)] / Ev[e^(c.t)] = e^(q.t) e^(d.t) = [Sum_{n>=0} 2n t^(2n-1)/(n!(n+1)!)] / [Sum_{n>=0} t^(2n)/(n!(n+1)!)] with Ev[..] denoting umbral evaluation, so q(n) = c(n+1) = A126120(n+1) and d(2n) = (-1)^n A238390(n) and vanishes otherwise. Then (r. + c.)^n = q(n) = Sum_{k=0..n} binomial(n,k) r(k) c(n-k) and (q. + d.)^n = r(n), relating A180874, A126120 (A000108), and A238390 through binomial convolutions.

%C The sequence can also be represented in terms of the Faber polynomials of A263916 as a(n) = |(2n-1)! F(2n,0,b(2),0,b(4),0,..)| = |h(2n)| where b(2n) = 1/(n!(n + 1)!) = A126120(2n)/(2n)! = A000108(n)/(2n)!, giving h(0) = 1, h(1) = 0, h(2) = 1, h(3) = 0, h(4) = -1, h(5) = 0, h(6) = 5, h(7) = 0, h(8) = -56, ..., implying, among other relations, that A000108(n/2)= A126120(n) = Bell(n,0,h(2),0,h(4),...), the Bell polynomials of A036040 which reduce to A257490 in this case.

%C (End)

%C From _Colin Defant_, Sep 06 2018: (Start)

%C a(n) is the number of pairs (rho,r), where rho is a matching on [2n] and r is an acyclic orientation of the crossing graph of rho in which the block containing 1 is the only source (see the Josuat-Verges paper or the Defant-Engen-Miller paper for definitions).

%C a(n) is the number of permutations of [2n-1] that have exactly 1 preimage under West's stack-sorting map.

%C a(n) is the number of valid hook configurations of permutations of [2n-1] that have n-1 hooks (see the paper by Defant, Engen, and Miller for definitions).

%C Say a binary tree is full if every vertex has either 0 or 2 children. If u is a left child in such a tree, then we can start at the sibling of u and travel down left edges until reaching a leaf v. Call v the leftmost nephew of u. A decreasing binary plane tree on [m] is a binary plane tree labeled with the elements of [m] in which every nonroot vertex has a label that is smaller than the label of its parent. a(n) is the number of full decreasing binary plane trees on [2n-1] in which every left child has a label that is larger than the label of its leftmost nephew.

%C (End)

%H G. C. Greubel, <a href="/A180874/b180874.txt">Table of n, a(n) for n = 1..250</a>

%H Colin Defant, <a href="https://arxiv.org/abs/1904.02613">Descents in t-Sorted Permutations</a>, arXiv:1904.02613 [math.CO], 2019.

%H Colin Defant, Michael Engen, and Jordan A. Miller, <a href="https://arxiv.org/abs/1809.01340">Stack-sorting, set partitions, and Lassalle's sequence</a>, arXiv:1809.01340 [math.CO], 2018.

%H Colin Defant, <a href="https://arxiv.org/abs/1904.02627">Catalan Intervals and Uniquely Sorted Permutations</a>, arXiv:1904.02627 [math.CO], 2019.

%H Colin Defant, <a href="https://arxiv.org/abs/2004.11367">Troupes, Cumulants, and Stack-Sorting</a>, arXiv:2004.11367 [math.CO], 2020. See p. 37.

%H Matthieu Josuat-Verges, <a href="https://arxiv.org/abs/1203.3157">Cumulants of the q-semicircular law, Tutte polynomials, and heaps</a>, arXiv:1203.3157 [math.CO], 2012.

%H Michel Lassalle, <a href="http://arxiv.org/abs/1009.4225">Catalan numbers and a new integer sequence</a>, arXiv:1009.4225 [math.CO], 2010-2012.

%H Michel Lassalle, <a href="https://doi.org/10.1016/j.jcta.2012.01.002">Two integer sequences related to Catalan numbers</a>, Journal of Combinatorial Theory, Series A, Volume 119, Issue 4, May 2012, Pages 923-935.

%H Hanna Mularczyk, <a href="https://arxiv.org/abs/1908.04025">Lattice Paths and Pattern-Avoiding Uniquely Sorted Permutations</a>, arXiv:1908.04025 [math.CO], 2019.

%F a(n) = (-1)^(n-1) * (C(n)+Sum_{j=1..n-1} (-1)^j *binomial(2n-1,2j-1) * a(j) *C(n-j)), where C() = A000108(). - _R. J. Mathar_, Apr 17 2011, corrected by _Vaclav Kotesovec_, Feb 28 2014

%F E.g.f.: Sum_{k>=0} a(k)*x^(2*k+2)/(2*k+2)! = log(x/BesselJ(1,2*x)). - _Sergei N. Gladkovskii_, Dec 28 2011

%F a(n) ~ (n!)^2 / (sqrt(Pi) * n^(3/2) * r^n), where r = BesselJZero[1, 1]^2/16 = 0.917623165132743328576236110539381686855099186384686... - _Vaclav Kotesovec_, added Feb 28 2014, updated Mar 01 2014

%F Define E(m,n) by E(1,1) = 1, E(n,n) = 0 for n > 1, and E(m,n) = Sum_{j=1..m} Sum_{i=1..n-m-1} binomial(n-m-1,i-1) * F_j(i+j-1) * F_{m-j}(n-j-i) for 0 <= m < n, where F_m(n) = Sum_{j=m..n} E_j(n). Then a(n) = F_0(2n-1). - _Colin Defant_, Sep 06 2018

%p A000108 := proc(n) binomial(2*n,n)/(1+n) ; end proc:

%p A180874 := proc(n) option remember; if n = 1 then 1; else A000108(n)+add((-1)^j*binomial(2*n-1,2*j-1)*procname(j)*A000108(n-j),j=1..n-1) ; %*(-1)^(n-1) ; end if; end proc: # _R. J. Mathar_, Apr 16 2011

%t nmax=20; a = ConstantArray[0,nmax]; a[[1]]=1; Do[a[[n]] = (-1)^(n-1)*(Binomial[2*n,n]/(n+1) + Sum[(-1)^j*Binomial[2n-1,2j-1]*a[[j]]* Binomial[2*(n-j),n-j]/(n-j+1),{j,1,n-1}]),{n,2,nmax}]; a (* _Vaclav Kotesovec_, Feb 28 2014 *)

%Y Cf. A000108, A001263, A188664, A115369.

%Y Cf. A036040, A097610, A126120, A238390, A263916, A257490.

%K nonn,easy

%O 1,3

%A _Jonathan Vos Post_, Sep 22 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 03:01 EDT 2024. Contains 371767 sequences. (Running on oeis4.)