login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180314 Decimal expansion of the torsional rigidity constant for a right isosceles triangular shaft. 0

%I

%S 0,2,6,0,8,9,6,5,1,7,1,1,5,1,2,9,5,1,0,7,8,1,9,7,9,3,5,9,2,8,9,3,5,5,

%T 5,1,3,9,9,0,7,3,5,4,7,8,3,6,5,7,4,3,9,8,5,9,2,7,0,8,5,1,7,7,5,3,7,9,

%U 0,7,5,3,7,9,0,1,4,6,2,2,9,4,6,0,9,4,8,9,1,7,5

%N Decimal expansion of the torsional rigidity constant for a right isosceles triangular shaft.

%C No closed form is apparently known.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TorsionalRigidity.html">TorsionalRigidity</a>

%F 1/12 - (16*Sum_{n >= 1}(coth(((-1 + 2*n)*Pi)/2)/(-1 + 2*n)^5))/Pi^5.

%e 0.026089651711512...

%p Digits := 130 ; x := 31*Zeta(5)/32 ; for l from 1 to 70 do x := x+2* hypergeom([1/2,1/2,1/2,1/2,1/2,1],[3/2,3/2,3/2,3/2,3/2],exp(-2*Pi*l))/exp(Pi*l) ; x := evalf(x) ; y := evalf(-16*x/Pi^5+1/12) ; print(y) ; end do: # _R. J. Mathar_, Aug 31 2010

%t digits = 130; x = N[(31*Zeta[5])/32, digits]; For[k = 1, k <= 70, k++, x = x + (2*HypergeometricPFQ[{1/2, 1/2, 1/2, 1/2, 1/2, 1}, {3/2, 3/2, 3/2, 3/2, 3/2}, E^(-2*Pi*k)])/E^(Pi*k); y = 1/12 - (16*x)/Pi^5]; Join[{0}, RealDigits[y][[1]]][[1 ;; 91]] (* _Jean-Fran├žois Alcover_, Oct 25 2012, translated from _R. J. Mathar_'s Maple program *)

%K nonn,cons

%O 0,2

%A _Eric W. Weisstein_, Aug 27 2010

%E More digits from _R. J. Mathar_, Aug 31 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 18 09:15 EST 2020. Contains 332011 sequences. (Running on oeis4.)