login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of compositions of n without 5's and having k parts; 1 <= k <= n.
6

%I #16 Nov 15 2019 21:30:28

%S 1,1,1,1,2,1,1,3,3,1,0,4,6,4,1,1,3,10,10,5,1,1,4,12,20,15,6,1,1,5,15,

%T 31,35,21,7,1,1,6,19,44,65,56,28,8,1,1,8,24,60,106,120,84,36,9,1,1,8,

%U 33,80,160,222,203,120,45,10,1,1,9,40,111,230,372,420,322,165,55,11,1

%N Triangle read by rows: T(n,k) is the number of compositions of n without 5's and having k parts; 1 <= k <= n.

%D P. Chinn and S. Heubach, Compositions of n with no occurrence of k, Congressus Numerantium, 164 (2003), pp. 33-51 (see Table 7).

%D R.P. Grimaldi, Compositions without the summand 1, Congressus Numerantium, 152, 2001, 33-43.

%H P. Chinn and S. Heubach, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL6/Heubach/heubach5.html">Integer Sequences Related to Compositions without 2's</a>, J. Integer Seqs., Vol. 6, 2003.

%F Number of compositions of n without p's and having k parts = Sum_{j=(pk-n)/(p-1)..k} (-1)^(k-j)*binomial(k,j)*binomial(n-pk+pj-1, j-1).

%F For a given p, the g.f. of the number of compositions without p's is G(t,z) = t*g(z)/(1-t*g(z)), where g(z) = z/(1-z) - z^p; here z marks sum of parts and t marks number of parts.

%e T(8,2)=5 because we have (1,7),(7,1),(2,6),(6,2),and (4,4).

%e Triangle starts:

%e 1;

%e 1, 1;

%e 1, 2, 1;

%e 1, 3, 3, 1;

%e 0, 4, 6, 4, 1;

%e 1, 3, 10, 10, 5, 1;

%p p:= 5: T := proc (n, k) options operator, arrow: sum((-1)^(k-j)*binomial(k, j)*binomial(n-p*k+p*j-1, j-1), j = (p*k-n)/(p-1) .. k) end proc: for n to 13 do seq(T(n, k), k = 1 .. n) end do; yields sequence in triangular form

%p p:=5: g:=z/(1-z)-z^(p): G:=t*g/(1-t*g): Gser:=simplify(series(G,z=0,15)): for n from 1 to 13 do P[n]:=sort(coeff(Gser,z,n)); # yields sequence in triangular form

%p with(combinat): m := 5: T := proc (n, k) local ct, i: ct := 0: for i to numbcomp(n, k) do if member(m, composition(n, k)[i]) = false then ct := ct+1 else end if end do: ct end proc: for n to 12 do seq(T(n, k), k = 1 .. n) end do; # yields sequence in triangular form

%t p = 5; max = 14; g = z/(1-z) - z^p; G = t*g/(1-t*g); Gser = Series[G, {z, 0, max+1}]; t[n_, k_] := SeriesCoefficient[Gser, {z, 0, n}, {t, 0, k}]; Table[t[n, k], {n, 1, max}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jan 28 2014, after Maple *)

%Y Cf. A011973, A180177, A180178, A180179, A180181, A180182, A180183.

%K nonn,tabl

%O 1,5

%A _Emeric Deutsch_, Aug 15 2010