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In this note, we prove two formulae about R(n, k), the number of k-reverses of n (where
1  k  n). These numbers appear in sequence A180171 in the OEIS. As noted in the
comments for the sequence, the “reverse of a k-composition is the k-composition obtained
by writing its parts in reverse.” In addition, a “k-reverse of n is a k-composition of n which
is cyclically equivalent to its reverse.”

The equivalence classes created by cyclically equivalent k-reverses of n are called “Som-
merville symmetrical cyclic compositions” because they were studied by Sommerville (1909,
pp. 301–304). The number T (n, k) of Sommerville symmetrical cyclic compositions of n
with k parts (or equivalently, the number of equivalence classes of cyclically equivalent k-
compositions of n) appear in sequence A119963 (for 1  k  n by ignoring the numbers
T (n, 0)).

Sommerville (1909) proved that, for 0  k  n (with the exception of the case T (0, 0)),

T (2n, 2k) = T (2n+ 1, 2k) = T (2n+ 1, 2k + 1) = T (2n+ 2, 2k + 1) =
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More than a century later, these formulae were re-discovered (in a slightly di↵erent context)
by McSorley and Shoen (2013).

Let A is a set of positive integers and, for 1  k  n, let TA(n, k) be the total number of
Sommerville symmetrical cyclic compositions of n with length k and parts only in A (that
is, the number of equivalence classes of cyclically equivalent k-reverses of n with parts only
in A). Hadjicostas and Zhang (2017) proved that the g.f. of T (n, k) is

X

n,k�1

TA(n, k) x
n
y

k =
(1 + yfA(x))2

2(1� y

2
fA(x2))

� 1

2
, (1)

where fA(x) =
P

m2A x

m
. For sequence A119963, A = all positive integers = Z>0, in which

case, TA(n, k) = T (n, k) and equation (1) becomes
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Let AR(n, k) be the number of aperiodic k-reverses of n. These numbers appear in
sequence A180279. According to the documentation of the sequence, a “k-composition is
aperiodic (primitive) if its period is k, or if it is not the concatenation of at least two smaller
[equal] compositions.”

In October 2017, A. Howroyd provided the following two formulae in the documentation
of sequences A180171 and A180279:
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valid for 1  k  n. Here, µ(d) is the Möbius function at positive integer d, given by
sequence A008683.

Based on the two formulae above, we shall prove the following two formulae:
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where �

(�1)(s) is the Dirichlet inverse of the Euler totient function at positive integer n,
given by sequence A023900, and
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Proof. In Howroyd’s equations (3), let a = gcd(n, k), n⇤ = n/a, and k

⇤ = k/a. We then get:
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From the first equation in (7), we get R(n⇤
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Using the associativity of Dirichlet convolutions, we get
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From the documentation of sequence A023900 we know that
P

m|d mµ(m) = �

(�1)(d), and
hence

R(n⇤
a, k

⇤
a) = k

⇤
a

X

d|a

�

(�1)(d)

d

T

✓
n

⇤
a

d

,

k

⇤
a

d

◆
,

from which we can easily prove equation (4).
To prove equation (5), we use equation (4):
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Letting m = n/d and ` = k/d, we then obtain
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Equation (2) implies
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where g(x, y) is defined by equation (6). Equation (5) then follows from equations (8)
and (9).
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