Proofs of some formulae on the number of k-reverses of n using some formulae by A. Howroyd

Petros Hadjicostas

October 2017

In this note, we prove two formulae about $R(n, k)$, the number of k-reverses of n (where $1 \leq k \leq n)$. These numbers appear in sequence A180171 in the OEIS. As noted in the comments for the sequence, the "reverse of a k-composition is the k-composition obtained by writing its parts in reverse." In addition, a " k-reverse of n is a k-composition of n which is cyclically equivalent to its reverse."

The equivalence classes created by cyclically equivalent k-reverses of n are called "Sommerville symmetrical cyclic compositions" because they were studied by Sommerville (1909, pp. 301-304). The number $T(n, k)$ of Sommerville symmetrical cyclic compositions of n with k parts (or equivalently, the number of equivalence classes of cyclically equivalent k compositions of n) appear in sequence $\underline{\text { A119963 (for } 1 \leq k \leq n \text { by ignoring the numbers }}$ $T(n, 0)$).

Sommerville (1909) proved that, for $0 \leq k \leq n$ (with the exception of the case $T(0,0)$),

$$
T(2 n, 2 k)=T(2 n+1,2 k)=T(2 n+1,2 k+1)=T(2 n+2,2 k+1)=\binom{n}{k} .
$$

More than a century later, these formulae were re-discovered (in a slightly different context) by McSorley and Shoen (2013).

Let A is a set of positive integers and, for $1 \leq k \leq n$, let $T_{A}(n, k)$ be the total number of Sommerville symmetrical cyclic compositions of n with length k and parts only in A (that is, the number of equivalence classes of cyclically equivalent k-reverses of n with parts only in A). Hadjicostas and Zhang (2017) proved that the g.f. of $T(n, k)$ is

$$
\begin{equation*}
\sum_{n, k \geq 1} T_{A}(n, k) x^{n} y^{k}=\frac{\left(1+y f_{A}(x)\right)^{2}}{2\left(1-y^{2} f_{A}\left(x^{2}\right)\right)}-\frac{1}{2} \tag{1}
\end{equation*}
$$

where $f_{A}(x)=\sum_{m \in A} x^{m}$. For sequence A119963, $A=$ all positive integers $=\mathbb{Z}_{>0}$, in which case, $T_{A}(n, k)=T(n, k)$ and equation (1) becomes

$$
\begin{equation*}
\sum_{n, k \geq 1} T(n, k) x^{n} y^{k}=\frac{\left(1+x y-x^{2}\right) x y}{(1-x)\left(1-x^{2}-x^{2} y^{2}\right)} \tag{2}
\end{equation*}
$$

Let $\operatorname{AR}(n, k)$ be the number of aperiodic k-reverses of n. These numbers appear in sequence A180279. According to the documentation of the sequence, a " k-composition is aperiodic (primitive) if its period is k, or if it is not the concatenation of at least two smaller [equal] compositions."

In October 2017, A. Howroyd provided the following two formulae in the documentation of sequences A180171 and A180279:

$$
\begin{equation*}
R(n, k)=\sum_{d \mid \operatorname{gcd}(n, k)} \operatorname{AR}\left(\frac{n}{d}, \frac{k}{d}\right) \quad \text { and } \quad \operatorname{AR}(n, k)=k \sum_{d \mid \operatorname{gcd}(n, k)} \mu(d) T\left(\frac{n}{d}, \frac{k}{d}\right) \tag{3}
\end{equation*}
$$

valid for $1 \leq k \leq n$. Here, $\mu(d)$ is the Möbius function at positive integer d, given by sequence A008683.

Based on the two formulae above, we shall prove the following two formulae:

$$
\begin{equation*}
R(n, k)=\sum_{d \mid \operatorname{gcd}(n, k)} \phi^{(-1)}(d) \frac{k}{d} T\left(\frac{n}{d}, \frac{k}{d}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} R(n, k) x^{n} y^{k}=\sum_{s=1}^{\infty} \phi^{(-1)}(s) g\left(x^{s}, y^{s}\right) \tag{5}
\end{equation*}
$$

where $\phi^{(-1)}(s)$ is the Dirichlet inverse of the Euler totient function at positive integer n, given by sequence A023900, and

$$
\begin{equation*}
g(x, y)=\frac{(x y+x+1)(x y-x+1)(x+1) x y}{\left(x^{2} y^{2}+x^{2}-1\right)^{2}} \tag{6}
\end{equation*}
$$

Proof. In Howroyd's equations (3), let $a=\operatorname{gcd}(n, k), n^{*}=n / a$, and $k^{*}=k / a$. We then get:

$$
\begin{equation*}
R\left(n^{*} a, k^{*} a\right)=\sum_{d \mid a} \operatorname{AR}\left(\frac{n^{*} a}{d}, \frac{k^{*} a}{d}\right) \text { and } \operatorname{AR}\left(n^{*} a, k^{*} a\right)=k^{*} a \sum_{d \mid a} \mu(d) T\left(\frac{n^{*} a}{d}, \frac{k^{*} a}{d}\right) \tag{7}
\end{equation*}
$$

From the first equation in (7), we get $R\left(n^{*} a, k^{*} a\right)=\sum_{d \mid a} \mathrm{AR}\left(n^{*} d, k^{*} d\right)$. Using the last equation and the second equation in (7), we get

$$
R\left(n^{*} a, k^{*} a\right)=\sum_{d \mid a} k^{*} d \sum_{m \mid d} \mu(m) T\left(\frac{n^{*} d}{m}, \frac{k^{*} d}{m}\right)=k^{*} a \sum_{d \mid a} \frac{d}{a} \sum_{m \mid d} \mu(m) T\left(\frac{n^{*} d}{m}, \frac{k^{*} d}{m}\right) .
$$

Using the associativity of Dirichlet convolutions, we get
$R\left(n^{*} a, k^{*} a\right)=k^{*} a \sum_{d \mid a}\left(\sum_{m \mid d} \frac{\mu(m)}{d / m}\right) T\left(\frac{n^{*} a}{d}, \frac{k^{*} a}{d}\right)=k^{*} a \sum_{d \mid a} \frac{1}{d}\left(\sum_{m \mid d} m \mu(m)\right) T\left(\frac{n^{*} a}{d}, \frac{k^{*} a}{d}\right)$.
 hence

$$
R\left(n^{*} a, k^{*} a\right)=k^{*} a \sum_{d \mid a} \frac{\phi^{(-1)}(d)}{d} T\left(\frac{n^{*} a}{d}, \frac{k^{*} a}{d}\right)
$$

from which we can easily prove equation (4).
To prove equation (5), we use equation (4):

$$
\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} R(n, k) x^{n} y^{k}=\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \sum_{d \mid \operatorname{gcd}(n, k)} \phi^{(-1)}(d) \frac{k}{d} T\left(\frac{n}{d}, \frac{k}{d}\right) x^{n} y^{k}
$$

Letting $m=n / d$ and $\ell=k / d$, we then obtain

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} R(n, k) x^{n} y^{k}=\sum_{d=1}^{\infty} \phi^{(-1)}(d) \sum_{m=1}^{\infty} \sum_{\ell=1}^{\infty} \ell T(m, \ell)\left(x^{d}\right)^{m}\left(y^{d}\right)^{\ell} \tag{8}
\end{equation*}
$$

Equation (2) implies

$$
\begin{equation*}
\sum_{n, k \geq 1} T(n, k) k x^{n} y^{k-1}=\frac{\partial}{\partial y}\left(\frac{\left(1+x y-x^{2}\right) x y}{(1-x)\left(1-x^{2}-x^{2} y^{2}\right)}\right)=\frac{g(x, y)}{y} \tag{9}
\end{equation*}
$$

where $g(x, y)$ is defined by equation (6). Equation (5) then follows from equations (8) and (9).

References

[1] P. Hadjicostas and L. Zhang (2017), "Sommerville's symmetrical cyclic compositions of a positive integer with parts avoiding multiples of an integer," Fibonacci Quart., 55, 54-73.
[2] J. P. McSorley and A. H. Shoen (2013), "Rhombic tilings of (n, k)-ovals, (n, k, λ)-cyclic difference sets, and related topics," Discrete Math., 313, 129-154.
[3] D. M. Y. Sommerville (1909), "On Certain Periodic Properties of Cyclic Compositions of Numbers," Proc. London Math. Soc., S2-7, 263-313.

