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In this note, we prove two formulae about R(n, k), the number of k-reverses of n (where
1 < k < n). These numbers appear in sequence A180171 in the OEIS. As noted in the
comments for the sequence, the “reverse of a k-composition is the k-composition obtained
by writing its parts in reverse.” In addition, a “k-reverse of n is a k-composition of n which
is cyclically equivalent to its reverse.”

The equivalence classes created by cyclically equivalent k-reverses of n are called “Som-
merville symmetrical cyclic compositions” because they were studied by Sommerville (1909,
pp. 301-304). The number T'(n, k) of Sommerville symmetrical cyclic compositions of n
with k parts (or equivalently, the number of equivalence classes of cyclically equivalent k-
compositions of n) appear in sequence A119963 (for 1 < k < n by ignoring the numbers
T(n,0)).

Sommerville (1909) proved that, for 0 < k < n (with the exception of the case 7(0,0)),

T(2n,2k) = T(2n+1,2k) = T(2n+ 1,2k + 1) = T(2n + 2,2k + 1) = (Z)

More than a century later, these formulae were re-discovered (in a slightly different context)
by McSorley and Shoen (2013).

Let A is a set of positive integers and, for 1 < k < n, let T4(n, k) be the total number of
Sommerville symmetrical cyclic compositions of n with length &£ and parts only in A (that
is, the number of equivalence classes of cyclically equivalent k-reverses of n with parts only
in A). Hadjicostas and Zhang (2017) proved that the g.f. of T'(n, k) is
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where fa(x) =), 4 2™ For sequence A119963, A = all positive integers = Z, in which
case, T4(n, k) = T'(n, k) and equation (1) becomes
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Let AR(n, k) be the number of aperiodic k-reverses of n. These numbers appear in
sequence A180279. According to the documentation of the sequence, a “k-composition is
aperiodic (primitive) if its period is k, or if it is not the concatenation of at least two smaller
[equal] compositions.”

In October 2017, A. Howroyd provided the following two formulae in the documentation
of sequences A180171 and A180279:
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valid for 1 < k < n. Here, p(d) is the Mobius function at positive integer d, given by
sequence A008683.
Based on the two formulae above, we shall prove the following two formulae:
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where ¢~V (s) is the Dirichlet inverse of the Euler totient function at positive integer n,
given by sequence A023900, and
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Proof. In Howroyd’s equations (3), let a = ged(n, k), n* = n/a, and k* = k/a. We then get:
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From the first equation in (7), we get R(n*a,k*a) = >_,, AR(n"d, k*d). Using the last
equation and the second equation in (7), we get
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Using the associativity of Dirichlet convolutions, we get
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From the documentation of sequence A023900 we know that -, mpu(m) = ¢~V (d), and
hence “1(a)
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from which we can easily prove equation (4).
To prove equation (5), we use equation (4):
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Letting m = n/d and ¢ = k/d, we then obtain
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Equation (2) implies
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where g(x,y) is defined by equation (6). Equation (5) then follows from equations (8)
and (9). O
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