%I #4 Mar 31 2012 13:23:39
%S 1,1,1,2,1,1,6,2,1,1,1,22,6,2,2,1,1,1,92,22,6,4,6,2,1,2,1,1,1,426,92,
%T 22,12,22,6,4,2,6,2,1,2,1,1,1,2146,426,92,44,36,92,22,12,6,4,22,6,4,2,
%U 1,6,2,1,2,1,1,1,11624,2146,426,184,132,426,92,44,36,22,12,8,92,22,12
%N Triangle T(n,k) read by rows: product of A074664(a_i) of all parts a_i of the k-th partition of n.
%C Row n has A000041(n) elements, sorted in Abramowitz-Stegun order.
%F A048996(n,k)* T(n,k) = A179313(n,k).
%F sum_{k=1.. A000041(n)} T(n,k) = A179379(n).
%F T(n,1) = A074664(n).
%e T(6,4) refers to the 4th partition of 6, 3+3. T(6,4)=A074664(3)*A074664(3)=2*2.
%e T(7,3) refers to the 3rd partition of 7, 2+5. T(7,3)=A074664(2)*A074664(5)=1*22.
%e The triangle starts
%e 1;
%e 1,1;
%e 2,1,1;
%e 6,2,1,1,1;
%e 22,6,2,2,1,1,1;
%e 92,22,6,4,6,2,1,2,1,1,1;
%e 426,92,22,12,22,6,4,2,6,2,1,2,1,1,1;
%Y Cf. A000041, A179379, A074664.
%K nonn,tabf
%O 1,4
%A _Alford Arnold_, Jul 12 2010
%E Edited and extended by _R. J. Mathar_, Jul 16 2010