login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = Maximum number Q for an n X k 1..Q array with each value in 1..Q horizontally or vertically adjacent to each other value at least once, or -1 if no such number exists.
1

%I #14 Feb 15 2019 18:25:44

%S 1,2,2,2,3,2,3,4,4,3,3,4,5,4,3,3,5,6,6,5,3,3,6,6,7,6,6,3,4,6,7,8,8,7,

%T 6,4,4,7,8,8,9,8,8,7,4,4,7,8,9,10,10,9,8,7,4,5,7,9,10,11,11,11,10,9,7,

%U 5,5,7,10,11,12,12,12,12,11,10,7,5,5,8,10,11,12,12,13,12,12,11,10,8,5,5,8,11

%N T(n,k) = Maximum number Q for an n X k 1..Q array with each value in 1..Q horizontally or vertically adjacent to each other value at least once, or -1 if no such number exists.

%C Table starts

%C .1..2..2..3..3..3..3..4..4..4..5..5..5..5..5..5..5..6..6.6

%C .2..3..4..4..5..6..6..7..7..7..7..8..8..9..9.10.10.10.10

%C .2..4..5..6..6..7..8..8..9.10.10.11.11.-1.12.12.13.13

%C .3..4..6..7..8..8..9.10.11.11.12.13.13.14.14.15.15

%C .3..5..6..8..9.10.11.12.12.13.-1.14.15.16.16.-1

%C .3..6..7..8.10.11.12.12.-1.14.15.16.-1.17.-1

%C .3..6..8..9.11.12.13.14.15.16.-1.17.18.-1

%C .4..7..8.10.12.12.14.15.16.-1.-1.-1.19

%C .4..7..9.11.12.-1.15.16.17.-1.19.-1

%C .4..7.10.11.13.14.16.-1.-1.19.-1

%C .5..7.10.12.-1.15.-1.-1.19.-1

%C .5..8.11.13.14.16.17.-1.-1

%C .5..8.11.13.15.-1.18.19

%C .5..9.-1.14.16.17.-1

%C .5..9.12.14.16.-1

%C .5.10.12.15.-1

%C .5.10.13.15

%C .6.10.13

%C .6.10

%C .6

%H R. H. Hardin, <a href="/A178994/b178994.txt">Table of n, a(n) for n = 1..210</a> (T read by antidiagonals)

%F T(n,k) <= floor((1+sqrt(16kn-8k-8n+1))/2) but empirically either 0 or 1 below this maximum

%e n X n solutions with a maximal Q=2n-1

%e ..1..2..3..4..5.....1..2..3..4.....1..2..3.....1..2.....1

%e ..6..7..8..9..1.....5..6..7..1.....4..5..1.....3..2

%e ..2..3..4..6..3.....2..4..5..3.....2..3..4

%e ..5..9..2..8..5.....7..7..1..6

%e ..6..7..4..1..7

%e ...

%e .15.14.13.15.12.14.11.15...1..2..3..4..5..6..7.....1..2..3..4..5..6

%e .10..9.12..8.11.10.13..9...8..9.10.11.12.13..1.....7..8..9.10.11..1

%e .12..7..6.14..7..8..6.11...2..3..4..5..6..7.11.....2..3..4..6..7..3

%e ..5.15..4..5.13..4.10..5...4..1..6..2.10.12..2.....5..3.11..8..5.10

%e ..9..6..3..8..2.14..3..7...9.12..3.13..8..4..7.....9..6..2..4..1..8

%e ..8..1.15.13..3..1.12..4...6..8..7.10..5.13..9.....1.11..9..7.10..2

%e .15.11..2..1..9..4..2.11..11..3..5..1..9.11..8

%e ..5..1.10..7..2..6..5..3

%e ...

%e ..1..2..3..1..4..2..5..1..6..2.....1..2..3..1..4..2..5..1..6

%e ..7..8..4..9..5..7..3..8..5.10.....7..6..4..8..5..7..3..9..5

%e ..4..6.10..3.11..6.12..9.13..1.....4..9.10..2.11..8..6.11.10

%e .11..9..7.13..2.14..1.15..4.16....11..7.12..9.13..3.10..1.13

%e ..1.17.11..8.12..4.18..2.17..3.....3.14..1.15..2.12..8.16..4

%e .19..5.12.10.13.19..3..6.13.14....15..4.17..5.14..6.13..7.10

%e ..2.16..7.14.11.10.15.16.18..5....11.12.13.16..9.17.14.15.15

%e ..9.10.17..8.15.18..6.17.12.15.....2.17.10.14..8.15.12.16..6

%e .14.12.19.16.13..7.19.14.16..7....16..3.16.11.17.13..5.17..7

%e .15.17.18..9.19.15..8.18.11.19

%K sign,tabl

%O 1,2

%A _R. H. Hardin_, Jan 03 2011

%E Definition extended by _Georg Fischer_, Feb 15 2019