The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A178251 Primes p such that p^3 - 2 is prime. 6

%I

%S 19,31,37,67,109,151,211,241,277,367,439,457,619,691,727,787,859,967,

%T 1087,1171,1471,1489,1531,1579,1951,2131,2287,2791,2851,2971,3061,

%U 3319,3511,3547,3559,3739,4129,4357,4447,4507,4591,4651,4789,4801,4831,4951

%N Primes p such that p^3 - 2 is prime.

%C Solutions of the equation n' + (n^3-2)' = 2, where n' is the arithmetic derivative of n. - _Paolo P. Lava_, Nov 09 2012

%H Vincenzo Librandi, <a href="/A178251/b178251.txt">Table of n, a(n) for n = 1..1000</a>

%e 6857 = prime(882) = 19^3 - 2, 19 = prime(8) is 1st term.

%e 29789 = prime(3228) = 31^3 - 2, 31 = prime(11) is 2nd term.

%t Select[Prime[Range[10000]], PrimeQ[#^3 - 2] &] (* _Vincenzo Librandi_, Mar 20 2014 *)

%o (Sage) a = list(p for p in primes(10000) if is_prime(p**3-2)) # _D. S. McNeil_, May 25 2010

%o (MAGMA) [p: p in PrimesUpTo(5000) | IsPrime(p^3-2)]; // _Vincenzo Librandi_, Nov 17 2010

%o (PARI) list(lim)=my(v=List()); forprime(p=2,lim, if(isprime(p^3-2), listput(v, p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 08 2016

%Y Cf. A000040, A000578, A038599, A038600, A144953.

%K nonn,easy

%O 1,1

%A Ulrich Krug (leuchtfeuer37(AT)gmx.de), May 24 2010

%E Base tag removed by _D. S. McNeil_, May 25 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 00:40 EST 2020. Contains 331030 sequences. (Running on oeis4.)