login
Least m > 1 such that m^m - 1 is divisible by a prime of the form n*m + 1 = A125556(n).
1

%I #13 Nov 18 2017 04:46:46

%S 2,5,20,3,6,40,6,32,30,25,92,56,12,5,36,15,18,49,232,20,70,21,254,24,

%T 24,80,10,27,68,8,88,83,150,33,620,26,870,381,88,16,42,60,136,152,34,

%U 136,386,81,324,192,246,78,786,37,18,23,86,57,60,67,558,249,484,33,636

%N Least m > 1 such that m^m - 1 is divisible by a prime of the form n*m + 1 = A125556(n).

%H Joseph L. Wetherell, <a href="/A177494/b177494.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = (A125556(n) - 1)/n.

%o (PARI) a(n) = forprime(p=3, , if (!((p-1) % n) && (m = (p-1)/n) && (m > 1) && !((m^m-1) % p), return (m));); \\ _Michel Marcus_, Nov 18 2017

%Y Cf. A125556 (smallest prime p = n*m + 1 that divides m^m - 1 for some m > 1).

%K nonn

%O 1,1

%A _Alexander Adamchuk_, May 10 2010