%I #22 Jan 09 2025 13:20:11
%S 1,1,0,3,5,29,152,136,2016,10959,26840,1056437,2495955,16311831,
%T 102287808,1627690024,10021808981,25377192720,1085424779823,
%U 2681584376185,17876295136009,113220181313816,1933742696582736
%N Let p = prime(n). Then a(n) = Fibonacci(p+1)/p if this is an integer, otherwise a(n) = Fibonacci(p-1)/p if this is an integer, and fall back to a(n)=0 if both are non-integer.
%C This differs only trivially from the better-defined A092330. - _John Blythe Dobson_, Sep 20 2014
%p A176951aux := proc(n)
%p if n = 0 then
%p 0;
%p elif combinat[fibonacci](n+1) mod n = 0 then
%p combinat[fibonacci](n+1)/n ;
%p elif combinat[fibonacci](n-1) mod n = 0 then
%p combinat[fibonacci](n-1)/n ;
%p else
%p 0 ;
%p end if;
%p end proc:
%p A176951 := proc(n)
%p A176951aux(ithprime(n)) ;
%p end proc:
%p seq(A176951(n),n=1..20) ; # _R. J. Mathar_, Oct 29 2011
%t f[n_] = If[n == 0, 0, If[Mod[Fibonacci[n + 1], n] == 0, Fibonacci[n + 1]/n, If[Mod[Fibonacci[n - 1], n] == 0, Fibonacci[n - 1]/n, 0]]];
%t Table[f[Prime[n + 1]], {n, 0, 50}]
%o (PARI) a(n)=my(p=prime(n),t);t=fibonacci(p+1);if(t%p==0,t/p,t=fibonacci(p-1);if(t%p==0,t/p,0)) \\ _Charles R Greathouse IV_, Oct 29 2011
%Y Cf. A092330.
%K nonn
%O 1,4
%A _Roger L. Bagula_, Apr 29 2010