The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176420 A symmetrical triangle sequence;q=2;c(n,q)=Product[1 - q^i, {i, 1, n}];t(n,m,q)=1 c(n, q)/(c[m, q)*c(n - m, q))-Binomial[n, m] 0

%I #2 Mar 30 2012 17:34:40

%S 1,1,1,1,2,1,1,5,5,1,1,12,30,12,1,1,27,146,146,27,1,1,58,637,1376,637,

%T 58,1,1,121,2647,11777,11777,2647,121,1,1,248,10768,97100,200718,

%U 97100,10768,248,1,1,503,43400,787952,3309622,3309622,787952,43400,503,1,1

%N A symmetrical triangle sequence;q=2;c(n,q)=Product[1 - q^i, {i, 1, n}];t(n,m,q)=1 c(n, q)/(c[m, q)*c(n - m, q))-Binomial[n, m]

%C Row sums are:

%C {1, 2, 4, 12, 56, 348, 2768, 29092, 416952, 8282956, 229754592,...}.

%F q=2;

%F c(n,q)=Product[1 - q^i, {i, 1, n}];

%F t(n,m,q)=t(n,m,q)=1 c(n, q)/(c[m, q)*c(n - m, q))-Binomial[n, m]

%e {1},

%e {1, 1},

%e {1, 2, 1},

%e {1, 5, 5, 1},

%e {1, 12, 30, 12, 1},

%e {1, 27, 146, 146, 27, 1},

%e {1, 58, 637, 1376, 637, 58, 1},

%e {1, 121, 2647, 11777, 11777, 2647, 121, 1},

%e {1, 248, 10768, 97100, 200718, 97100, 10768, 248, 1},

%e {1, 503, 43400, 787952, 3309622, 3309622, 787952, 43400, 503, 1},

%e {1, 1014, 174207, 6347596, 53743778, 109221400, 53743778, 6347596, 174207, 1014, 1}

%t c[n_, q_] = Product[1 - q^i, {i, 1, n}];

%t t[n_, m_, q_] = c[n, q]/(c[m, q]*c[n - m, q]) - Binomial[n, m] + 1;

%t Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]

%K nonn,tabl,uned

%O 0,5

%A _Roger L. Bagula_, Apr 17 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 13:41 EDT 2024. Contains 372826 sequences. (Running on oeis4.)