%I #13 Oct 25 2020 11:37:11
%S 1,1,2,5,42,132,1144,3978,35530,1,15,210,2470,22386,228459,2908360,
%T 37584261,284291205,3701413144,35,852,19019,349812,6529292,132435472,
%U 2000945100,24366118700,328386663605,3520256293710,2072,81375,2271776,59988852,1227434238,33401522154,584134601050,11919696387170,234924043375476,3924875235562164,208335
%N Binomial(prime(n),s)/prime(n) where s is the sum of the decimal digits of n.
%C For n = 10^p, a(n) = 1.
%F a(n) = A007318( A000040(n), A007953(n))/A000040(n).
%F a(n) = A060604(n)/A000040(n), n<10.
%e a(5) = 42 because prime(5) = 11, s = 5, binomial(11,5)/11 = 462/11=42.
%e a(16)=2908360 because prime(16)=53, s=7, binomial(53,7)/53 =154143080/53 = 2908360.
%p A176266 := proc(n) binomial(ithprime(n),A007953(n))/ithprime(n) ; end proc:
%p seq(A176266(n),n=1..20) ;
%t Table[Binomial[Prime[n],Total[IntegerDigits[n]]]/Prime[n],{n,40}] (* _Harvey P. Dale_, Oct 25 2020 *)
%o (Sage) A176266 = lambda n: binomial(nth_prime(n), sum(n.digits()))/nth_prime(n) # _D. S. McNeil_, Dec 08 2010
%Y Cf. A075872.
%K nonn,base
%O 1,3
%A _Michel Lagneau_, Dec 07 2010