The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175841 Fast "exotic addition" a o b = [ a[1]+b[1], a[1]*b[2]+a[2]*b[1] ]. 0

%I

%S 1,2,4,8,12,24,30,64,72,120,130,288,300,420,434,1024,1040,1296,1314,

%T 2400,2420,2860,2882,6912,6936,7800,7826,11760,11788,13020,13050,

%U 32768,32800,35360,35394,46656,46692,49932,49970,96000,96040,101640,101682

%N Fast "exotic addition" a o b = [ a[1]+b[1], a[1]*b[2]+a[2]*b[1] ].

%C Define binary operation "o" on pairs of vectors a,b: a o b = [ a[1]+b[1], a[1]*b[2]+a[2]*b[1] ], define scalar multiplication "x" on vector p: 2n x p = (n x p) o (n x p) (2n+1) x p = ((n x p) o (n x p)) o p 1 x p = p. Sequence is: a(n) = (n x p)[2] for p=[1,1] (the first component is n). Other sequences with o associative?

%H Maximilian Hasler, <a href="http://list.seqfan.eu/pipermail/seqfan/2009-December/003299.html">structure & sequences defined by "exotic multiplication"</a>, SeqFan Dec 2009. See the whole thread.

%e Set p=[1,1], a(2)=o(p,p) [2] = [1+1,1*1+1*1] [2]=[2,2] [2]=2; a(3)=o(o(p,p),p) [2]=o([2,2],[1,1]) [2] =[2+1,2*1+1*2] [2] = [3,4] [2] = 4 (note that computation is fast as in fast exponentiation because of the definition of x).

%o (PARI) \\ code by _M. F. Hasler_ |vector(20,i,a(i)[2])|