%I
%S 0,0,0,3,0,0,769230,476190,2941176470588235,18,
%T 11235955056179775280898876404494382022471910,4
%N The periodic part of the decimal expansion of 1/Fibonacci(n) with any initial zeros placed at the end of the cycle.
%C A curiosity: the first six digits (with the first digit zero) of a(11): {0,1,1,2,3,5} are the first six Fibonacci numbers!
%C The next term of this sequence contains 232 digits (decimal form of the periodic part of 1/233 = 0.0042918454935622317596566523605150214...7210300).
%H Vincenzo Librandi, <a href="/A175562/b175562.txt">Table of n, a(n) for n = 1..22</a>
%e 1/Fibonacci(7) = 1/13 = 0.0769230769230769230... and digit-cycle is 769230, so a(7)= 769230.
%t fc[n_] := Block[{q}, q = Last[First[RealDigits[1/Fibonacci[n]]]]; If[IntegerQ[q], q = {}]; FromDigits[q]]; Table[fc[n], {n, 40}] (* see the Mathematica program in A036275 *)
%Y Cf. A036275.
%K nonn,base
%O 1,4
%A _Michel Lagneau_, Jul 02 2010
%E Name and comment corrected by _T. D. Noe_, Jul 06 2010
|