OEIS A175497: PRODUCTS OF TRIANGULAR NUMBERS WHICH ARE PERFECT SQUARES.

RICHARD J. MATHAR

Abstract

Which products of two distinct triangular numbers are perfect squares? Sequence [3, A175497] is a list of the bases of these perfect squares. We provide an algorithm which relates a known index of one of the triangular factors to a Pell equation to find the indices of the other triangular factors.

1. Notation

The triangular numbers are [3, A000217]

$$
\begin{equation*}
T(n) \equiv \frac{n(n+1)}{2} \tag{1}
\end{equation*}
$$

and products of triangular numbers may be perfect squares

$$
\begin{equation*}
T(n) T(m) \stackrel{?}{=} s^{2} \tag{2}
\end{equation*}
$$

with bases s collected in [3, A175497]. The trivial solutions are $n=m$ which define the square triangular numbers $T(n)^{2}$ [3, A000537]. So the principle question asks for solutions in the index range $m<n$.

Remark 1. There are cases where s^{2} is a square triangular number but also a product of distinct triangular number, e.g. $T(3)^{2}=T(1) T(8)=6^{2}$.

Multiplying (2) by 4 we target the equivalent question for products of oblong numbers [3, A002378] being even squares,

$$
\begin{equation*}
n(n+1) m(m+1) \stackrel{?}{=}(2 s)^{2} \tag{3}
\end{equation*}
$$

2. Algorithm

Given an upper search limit for s, the task is to scan solutions of (3) for each n in the range $2 n \leq 1+\sqrt{1+8 s^{2}}$. So we consider n given and search for the set of matching m. Our key idea is the observation that the oblong $n(n+1)$ has a unique prime factorization according to the fundamental law of algebra; to construct a perfect square $(2 s)^{2}, m(m+1)$ must complement the prime factors with odd exponents such that the sum of both exponents of each prime factor in $n(n+1) m(m+1)$ becomes even; apart from that requirement $m(m+1)$ may be multiplied by any other perfect square. So the requirement is that the squarefree parts of $n(n+1)$ and $m(m+1)$ are equal [3, A007913]:

$$
\begin{equation*}
\operatorname{core}(n(n+1))=\operatorname{core}(m(m+1)) \tag{4}
\end{equation*}
$$

[^0]Remark 2. The squarefree part is a multiplicative arithmetic function and n and $n+1$ are coprime, so core $(n(n+1))=\operatorname{core}(n) \operatorname{core}(n+1)[3$, A083481].

Remark 3. The number of distinct prime factors in the squarefree part of the n-th oblong number is

$$
\begin{equation*}
\omega\left(\operatorname{core}\left(n^{2}+n\right)\right)=1,2,1,1,3,3,2,1,2,3,2,2,3,4,2,1,2,2,2,3,4, \ldots, n \geq 1 \tag{5}
\end{equation*}
$$

Given n, the radix

$$
\begin{equation*}
r \equiv \operatorname{core}\left(n^{2}+n\right) \tag{6}
\end{equation*}
$$

and the perfect square

$$
\begin{equation*}
\square_{n} \equiv \frac{n(n+1)}{r} \tag{7}
\end{equation*}
$$

are also known [3, A083481]:

$$
\begin{equation*}
r=2,6,3,5,30,42,14,2,10,110,33,39,182,210,15,17 \ldots, n \geq 1 \tag{8}
\end{equation*}
$$

The solutions of (3) require that the oblong factor is r times a perfect square:

$$
\begin{equation*}
m(m+1) \stackrel{!}{=} r y^{2} \tag{9}
\end{equation*}
$$

The usual approach for diophantine equations is to diagonalize the quadratic form on the left hand side, $m(m+1)=(m+1 / 2)^{2}-1 / 4$, so the task is to solve the "classical" Pell Equation

$$
\begin{equation*}
(2 m+1)^{2}-4 r y^{2}=1 \tag{10}
\end{equation*}
$$

Remark 4. Distinct indices n may lead to the same r, so there may be duplicates in the set of s that are generated by looping over distinct n.

The standard approach is to start with the continued fraction expansion [1] of

$$
\begin{equation*}
D \equiv 4 r \tag{11}
\end{equation*}
$$

to find the fundamental solution of

$$
\begin{equation*}
x^{2}-D y^{2}=1 \tag{12}
\end{equation*}
$$

$[5,4,10,15,7,8,6]$ and to compute the powers of the associated quadratic surd to find the general solution [5, Cor. 1.10][12].

Because the complete factorization of D is known, it suffices to solve

$$
\begin{equation*}
x^{2}-r(2 y)^{2}=1 \tag{13}
\end{equation*}
$$

because the solutions x in (12) and (13) are the same and the solutions y differ only by a factor $2[5, \mathrm{p} .16]$.

Remark 5. The period lengths of the squarefree integers are listed in [3, A035015]. The period lengths of squarefree parts of the oblong numbers are

$$
\begin{equation*}
1,2,2,1,2,2,4,1,1,2,4,2,2,2,2,1,4,2,4,2,2,2,4,2,1,4,6,2, \ldots, n \geq 1 \tag{14}
\end{equation*}
$$

If a series of solutions/convergents of (13) is obtained, only the solutions with odd x are kept to match the requirement in (10) that $x=2 m+1$.

Remark 6. As our r are nonsquare, the continued fractions are periodic and palindromic [9][14].

The trivial solution mentioned in Section 1 means a solution $\left(x=2 n+1, y^{2}=\right.$ \square_{n}) of (10) is already known. This solution $2 n+1$ is typically also the fundamental solution, but for $n=8,24,48,49,80,120 \ldots$ smaller solutions exist [3, A306415], which means nontrivial solutions of (3) arise. This subset of parameters n arises because the squarefree parts r in the list (8) are not unique functions of n but may show up again later in the list.

Example 1. $r(1)=2$ also appears at at $r(8)=r(49)=r(288)=\ldots=2$. $r(2)=6$ also appears at $r(24)=r(242)=\cdots=6 . \quad r(3)=3$ also appears at $r(48)=r(675)=\cdots=3 . r(4)=5$ also appears at $r(80)=r(1444)=\cdots=5$.

Once a $r(n)$ has been computed, searching backwards in that list (8) for the same r provides a list of smaller indices (i.e. associated m) which have solved equation (10).

Remark 7. Lenstra writes [4]: "There is no known polynomial time algorithm for deciding whether a given power product represents the fundamental solution to Pell's equation." So apparently building such a list of $r(n)$ values is the only efficient way of predicting where in the (n, m) symmetric square grid of solutions (besides the diagonal of the trivial solutions) these extra m appear.

The standard theory of continued fractions tells that once a fundamental solution x (resp. m) of the Pell equation is found, the other solutions obey linear recurrences with constant coefficients (C-recurrences) with respect to smaller solutions.

For small n these lists of fundamental solutions m_{1} and larger solutions m_{i} from higher powers in the quadratic Field of $\sqrt{ } r$ look as follows:

n	r	m_{1}	m_{2}	m_{3}	m_{4}	OEIS	recur.
1	2	1	8	49	288	A001108	$m_{i}=7\left(m_{i-1}-m_{i-2}\right)+m_{i-3}$
2	6	2	24	242	2400	A132596	$m_{i}=11\left(m_{i-1}-m_{i-2}\right)+m_{i-3}$
3	3	3	48	675	9408	A007654	$m_{i}=15\left(m_{i-1}-m_{i-2}\right)+m_{i-3}$
4	5	4	80	1444		A132584	$m_{i}=29\left(m_{i-1}-m_{i-2}\right)+m_{i-3}$
5	30	5	120	2645		A322707	$m_{i}=23\left(m_{i-1}-m_{i-2}\right)+m_{i-3}$
6	42	6	168	4374		A322708	$m_{i}=27\left(m_{i-1}-m_{i-2}\right)+m_{i-3}$
7	14	7	224	6727		A322709	$m_{i}=31\left(m_{i-1}-m_{i-2}\right)+m_{i-3}$
8	2					see $n=2$	
9	10	9	360	13689		A132593	$m_{i}=39\left(m_{i-1}-m_{i-2}\right)+m_{i-3}$
10	110	10	440	18490			$m_{i}=43\left(m_{i-1}-m_{i-2}\right)+m_{i-3}$
15	15	15	960	59535			$m_{i}=63\left(m_{i-1}-m_{i-2}\right)+m_{i-3}$

The mechanism at work here is

- whatever the set of divisors in the starting values of the m-recurrences is, a C-recurrence ensures that the non-fundamental solutions "inherit" that set.
- a recurrence of the form $m_{i}=\alpha\left(m_{i-1}-m_{i-2}\right)+m_{i-3}$ ensures $m_{i}-1=$ $\alpha\left[\left(m_{i-1}-1\right)-\left(m_{i-2}-1\right)\right]+m_{i-3}-1$, which means the "cofactor" in the oblong number obeys the same recurrence and also "inherits" divisors of its earlier members. Altogether this ensures that the divisor r of (9) is maintained in all solutions $m(m+1)$.
There is a strong heuristics that recurrences for the solutions of the Pell equation in the table above are of the shape

$$
\begin{equation*}
m_{i}=(4 n+3)\left(m_{i-1}-m_{i-2}\right)+m_{i-3} . \tag{15}
\end{equation*}
$$

rooted at $m_{1}=n$ the fundamental solutions (from the trivial solution, with the exceptions as discussed above) and $m_{2}=4 n(n+1), m_{3}=n(4 n+3)^{2}$.
Remark 8. A"telescoping" step allows to rewrite this as inhomogeneous C-recurrences [3, A322699]

$$
\begin{equation*}
m_{i}=(4 n+2) m_{i-1}-m_{i-2}+2 n . \tag{16}
\end{equation*}
$$

The conjectural recurrence is equivalent to the generating functions (GF)

$$
\begin{equation*}
\sum_{i \geq 0} m_{i} x^{i}=\frac{n x(1+x)}{(1-x)\left[1-(4 n+2) x+x^{2}\right]} \tag{17}
\end{equation*}
$$

Splitting this into partial fractions

$$
\begin{equation*}
2 \sum_{i \geq 0} m_{i} x^{i}=-\frac{1}{(1-x)}+\frac{1-(2 n+1) x}{1-2(2 n+1) x+x^{2}} \tag{18}
\end{equation*}
$$

leads to closed form representations with Chebyshev polynomials (denoted by \hat{T} to set them apart from the triangular numbers) [11, 18.12.7][3, A322699]

$$
\begin{equation*}
2 m_{i}=\hat{T}_{2 n+1}(i)-1 \tag{19}
\end{equation*}
$$

Looking at the zeros of the denominator of the generating function

$$
\begin{equation*}
x^{2}-2(2 n+1) x+1=0 \rightsquigarrow x=2 n+1 \pm 2 \sqrt{n(n+1)} \tag{20}
\end{equation*}
$$

and an associated Binet-expansion then leads to the type of recurrence expected for the representations of powers of units in the quadratic fields in the theory of the continued fractions [2, 13, Prop. 4.1].

Appendix A. Maple demonstration program

The following is a Maple program (much faster versions exist) where the last line creates a list of all solutions s up to some maximum.

```
#!/usr/bin/env maple
interface(quiet=true):
# @param n
# @return The n-th triangular number
A000217 := proc(n)
    n*(n+1) /2 ;
end proc:
# @param n nonnegative integer
# @return the n-th oblong number
A002378 := proc(n)
            n*(n+1) ;
end proc:
```

```
# @param n A nonnegative integer.
```


@param n A nonnegative integer.

@return squarefree part of n

@return squarefree part of n

A007913 := proc(n)
A007913 := proc(n)
local f, a, d;
local f, a, d;
f := ifactors(n)[2] ;

```
    f := ifactors(n)[2] ;
```

```
a := 1 ;
for d in f do
        if type(op(2, d), 'odd') then
            a := a*op(1, d) ;
        end if;
    end do:
    a;
```

end proc:
\# squarefree part of n-th oblong nubmers
A083481 := $\operatorname{proc}(\mathrm{n})$
A007913(n) *A007913(n+1) ;
end proc:
\# Solve the Pell equation $x^{\wedge} 2-r *(2 * y) \wedge 2=1$
\# where r is the squarefree part of the n-th oblong number
\# and $x=2 m+1$ is odd. Return the fundamental solution [$\mathrm{m}, \mathrm{y}, \mathrm{r}$].
Pellsolve := proc(r)
option remember;
local cf,conv,i,x,y,m ;
cf := numtheory [cfrac] (sqrt(r),'periodic') ;
for i from 1 do
conv := numtheory [nthconver] (cf,i) ;
if type(denom(conv),'even') then
x := numer (conv) ; \# $2 * \mathrm{~m}+1$
y := denom(conv)/2 ;
if $x^{\wedge} 2-r *(2 * y) \wedge 2=1$ then
$\mathrm{m}:=(\mathrm{x}-1) / 2$;
return [m,y] ;
end if;
end if;
end do:
return $[0,0]$;
end proc:
\# List values of A175497 up to smax
\# The values are NOT obtained in sorted order but by fixing an index
\# n of the first factor $T(n)$ and considering all $T(m), m<n$ such
\# that the product is at most smax.
\# [This is a type of CRT scan order in the triangular area where m<n.]
\# Also note that the occasional cases where there are two distinct
\# factorization for the same square will be printed with multiplicity.
\# @param smax an upper limit for the listing of the bases of the squares
\# @return The list of solutions s where $T(n) * T(m)=s \wedge 2$, $i<>j, s<=s m a x$.
A175497 := proc(smax)
local n, pellf,pell,m,y,r,itr,twom1,ct, qform,mextra,s ,alls;
ct := 1 ;
alls := \{0\} ;
for n from 1 do
\# because A000217(m)>=1, no more solutions are
\# found if already this factor passes the maximum.
if $\mathrm{A} 000217(\mathrm{n})$ > smax^2 then

```
                    break;
            end if;
            r := A083481(n) ;
            # The factor A000217(m) will complement r so
            # n(n+1)m(m+1) is at least n(n+1)*r. Sinc the search
            # is in n(n+1)m(m+1)=(2s)^2, check early that this
            # is within smax: n* (n+1)*r <= 4*s^2
            if n*(n+1)*r > 4*Smax^2 then
                continue ;
            end if;
            # obtain fundamental solution of (2m+1) ^2-4*r*y^2=1
            pellf := Pellsolve(r) ;
            m := op(1,pellf) ; y := op(2,pellf) ;
            # if m < n then
            if true then
                # consider only nontrivial solutions where m < n
                if m = 0 then
                print("n=",n,"no pell") ;
            else
                qform := 2*m+1+sqrt(4*r)*y ;
                pell := qform ;
                for itr from 1 do
                        # extract 2m+1 without sqrt(r)
                        twom1 := subs(sqrt(r)=0,pell) ;
                        mextra := (twom1-1)/2 ;
                        s := sqrt(n*(n+1)*mextra*(mextra+1))/2 ;
                        # if mextra < n and s <= smax then
                        if mextra <> n and s <= smax then
                                    # n*(n+1)*m*(m+1) = n*(n+1)*r*y^2 = (2s)^2 ;
                                    ct := ct+1 ;
                                    printf("# n= %d m=%d r=%d itr=%d ct=%d\n",n,mextra,r,it
                                    alls := alls union {s} ;
                                    print(alls,nops(alls)) ;
                                    # printf("%d\n",s) ;
                        else
                                    break ;
                        end if;
                        pell := expand(pell*qform) ;
                end do:
                end if;
            end if;
    end do:
    alls ;
end proc:
# generate all solutions for squares less than smax^2.
A175497(40000) ;
```


References

1. Die lehre von den kettenbrüchen, 3rd ed., Teubner Verlagsgesellschaft, Stuttgart, 1957.
2. Boaz Cohen, Chebyshev polynomials and pell equations over finite fields, Czech. Math. J. 71 (2021), no. 2, 491-510. MR 4263182
3. O. E. I. S. Foundation Inc., The On-Line Encyclopedia Of Integer Sequences, (2023), https://oeis.org/. MR 3822822
4. Jr H. W. Lenstra, Solving the pell equation, Not. Am. Math. Soc. 49 (2002), no. 2, 182-192. MR 1875156
5. Michael J. Jacabson and Hugh C. Williams, Solving the pell equation, Canad. Math. Soc., 2009. MR 2466979
6. Refik Kesin and Merve Güney Dunab, Positive integer solutions of some pell equations, Palest. J. Math. 8 (2019), no. 2, 213-226.
7. K. Matthews, The diophantine equation $x^{2}-d y^{2}=n$, Exposit. Math. 18 (2000), 323-331. MR 1788328
8. Keith Matthews, Thue's theorem and the diophantine euqation $x^{2}-d y^{2}= \pm n$, Mathem. Comput. 71 (2002), no. 239, 1281-1286. MR 1898757
9. J. McLaughlin, Polynomial solutions of pell's equation and fundamental units in real quadratic fields, J. London Math. Soc. 67 (2003), 16-28.
10. R. A. Mollin, Simple continued fraction solutions for diophantine equations, Expos. Mathem. 19 (2001), no. 1, 55-73. MR A1820127
11. Natl. Inst. Stand. Technol., Digital library of mathematical functions, NIST, 2022. MR 1990416
12. Ivan Niven, Quadratic diophantine equations in the rational and quadratic fields, Trans. Am. Math. Soc 52 (1942), 1-11. MR 0006739
13. Vladimir Pletser, Triangular numbers multiple of triangular numbers and solutions of pell equations, arXiv:2102.13494 [math.NT] (2021).
14. Bal Bahadur Tamang, On the study of quadratic diophantine equations, Master's thesis, Dept. Math. Inst. Sci. Techn. Tribhuvan Univ. Kathmandu Nepal, 2021.
15. Ahmet Tekcan, Continued fractions equation of $\sqrt{ } d$ and the pell equation $x^{2}-d y^{2}=1$, Mathem. Moravica 15 (2011), no. 2, 19-27.
URL: http://www.mpia.de/~mathar
Hoeschstr. 7, 52372 Kreuzau, Germany

[^0]: Date: March 16, 2023.
 2020 Mathematics Subject Classification. Primary 11A05, 11A07.

