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Abstract. Which products of two distinct triangular numbers are perfect

squares? Sequence [3, A175497] is a list of the bases of these perfect squares.
We provide an algorithm which relates a known index of one of the triangular

factors to a Pell equation to find the indices of the other triangular factors.

1. Notation

The triangular numbers are [3, A000217]

(1) T (n) ≡ n(n+ 1)

2

and products of triangular numbers may be perfect squares

(2) T (n)T (m)
?
= s2

with bases s collected in [3, A175497]. The trivial solutions are n = m which define
the square triangular numbers T (n)2 [3, A000537]. So the principle question asks
for solutions in the index range m < n.

Remark 1. There are cases where s2 is a square triangular number but also a
product of distinct triangular number, e.g. T (3)2 = T (1)T (8) = 62.

Multiplying (2) by 4 we target the equivalent question for products of oblong
numbers [3, A002378] being even squares,

(3) n(n+ 1)m(m+ 1)
?
= (2s)2.

2. Algorithm

Given an upper search limit for s, the task is to scan solutions of (3) for each

n in the range 2n ≤ 1 +
√

1 + 8s2. So we consider n given and search for the
set of matching m. Our key idea is the observation that the oblong n(n + 1)
has a unique prime factorization according to the fundamental law of algebra; to
construct a perfect square (2s)2, m(m + 1) must complement the prime factors
with odd exponents such that the sum of both exponents of each prime factor in
n(n + 1)m(m + 1) becomes even; apart from that requirement m(m + 1) may be
multiplied by any other perfect square. So the requirement is that the squarefree
parts of n(n+ 1) and m(m+ 1) are equal [3, A007913]:

(4) core(n(n+ 1)) = core(m(m+ 1)).
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Remark 2. The squarefree part is a multiplicative arithmetic function and n and
n+ 1 are coprime, so core(n(n+ 1)) = core(n) core(n+ 1) [3, A083481].

Remark 3. The number of distinct prime factors in the squarefree part of the n-th
oblong number is

(5) ω(core(n2 + n)) = 1, 2, 1, 1, 3, 3, 2, 1, 2, 3, 2, 2, 3, 4, 2, 1, 2, 2, 2, 3, 4, . . . , n ≥ 1.

Given n, the radix

(6) r ≡ core(n2 + n)

and the perfect square

(7) �n ≡
n(n+ 1)

r

are also known [3, A083481]:

(8) r = 2, 6, 3, 5, 30, 42, 14, 2, 10, 110, 33, 39, 182, 210, 15, 17 . . . , n ≥ 1.

The solutions of (3) require that the oblong factor is r times a perfect square:

(9) m(m+ 1)
!
= ry2.

The usual approach for diophantine equations is to diagonalize the quadratic form
on the left hand side, m(m + 1) = (m + 1/2)2 − 1/4, so the task is to solve the
“classical” Pell Equation

(10) (2m+ 1)2 − 4ry2 = 1.

Remark 4. Distinct indices n may lead to the same r, so there may be duplicates
in the set of s that are generated by looping over distinct n.

The standard approach is to start with the continued fraction expansion [1] of

(11) D ≡ 4r

to find the fundamental solution of

(12) x2 −Dy2 = 1

[5, 4, 10, 15, 7, 8, 6] and to compute the powers of the associated quadratic surd to
find the general solution [5, Cor. 1.10][12].

Because the complete factorization of D is known, it suffices to solve

(13) x2 − r(2y)2 = 1

because the solutions x in (12) and (13) are the same and the solutions y differ only
by a factor 2 [5, p. 16].

Remark 5. The period lengths of the squarefree integers are listed in [3, A035015].
The period lengths of squarefree parts of the oblong numbers are

(14) 1, 2, 2, 1, 2, 2, 4, 1, 1, 2, 4, 2, 2, 2, 2, 1, 4, 2, 4, 2, 2, 2, 4, 2, 1, 4, 6, 2, . . . , n ≥ 1.

If a series of solutions/convergents of (13) is obtained, only the solutions with
odd x are kept to match the requirement in (10) that x = 2m+ 1.

Remark 6. As our r are nonsquare, the continued fractions are periodic and palin-
dromic [9][14].
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The trivial solution mentioned in Section 1 means a solution (x = 2n + 1, y2 =
�n) of (10) is already known. This solution 2n+1 is typically also the fundamental
solution, but for n = 8, 24, 48, 49, 80, 120 . . . smaller solutions exist [3, A306415],
which means nontrivial solutions of (3) arise. This subset of parameters n arises
because the squarefree parts r in the list (8) are not unique functions of n but may
show up again later in the list.

Example 1. r(1) = 2 also appears at at r(8) = r(49) = r(288) = . . . = 2.
r(2) = 6 also appears at r(24) = r(242) = · · · = 6. r(3) = 3 also appears at
r(48) = r(675) = · · · = 3. r(4) = 5 also appears at r(80) = r(1444) = · · · = 5.

Once a r(n) has been computed, searching backwards in that list (8) for the same
r provides a list of smaller indices (i.e. associated m) which have solved equation
(10).

Remark 7. Lenstra writes [4]: “There is no known polynomial time algorithm for
deciding whether a given power product represents the fundamental solution to Pell’s
equation.” So apparently building such a list of r(n) values is the only efficient way
of predicting where in the (n,m) symmetric square grid of solutions (besides the
diagonal of the trivial solutions) these extra m appear.

The standard theory of continued fractions tells that once a fundamental solution
x (resp. m) of the Pell equation is found, the other solutions obey linear recurrences
with constant coefficients (C-recurrences) with respect to smaller solutions.

For small n these lists of fundamental solutions m1 and larger solutions mi from
higher powers in the quadratic Field of

√
r look as follows:

n r m1 m2 m3 m4 OEIS recur.
1 2 1 8 49 288 A001108 mi = 7(mi−1 −mi−2) +mi−3

2 6 2 24 242 2400 A132596 mi = 11(mi−1 −mi−2) +mi−3

3 3 3 48 675 9408 A007654 mi = 15(mi−1 −mi−2) +mi−3

4 5 4 80 1444 A132584 mi = 29(mi−1 −mi−2) +mi−3

5 30 5 120 2645 A322707 mi = 23(mi−1 −mi−2) +mi−3

6 42 6 168 4374 A322708 mi = 27(mi−1 −mi−2) +mi−3

7 14 7 224 6727 A322709 mi = 31(mi−1 −mi−2) +mi−3

8 2 see n = 2
9 10 9 360 13689 A132593 mi = 39(mi−1 −mi−2) +mi−3

10 110 10 440 18490 mi = 43(mi−1 −mi−2) +mi−3

15 15 15 960 59535 mi = 63(mi−1 −mi−2) +mi−3

The mechanism at work here is

• whatever the set of divisors in the starting values of the m-recurrences is,
a C-recurrence ensures that the non-fundamental solutions “inherit” that
set.
• a recurrence of the form mi = α(mi−1 −mi−2) + mi−3 ensures mi − 1 =
α[(mi−1 − 1)− (mi−2 − 1)] +mi−3 − 1, which means the “cofactor” in the
oblong number obeys the same recurrence and also “inherits” divisors of
its earlier members. Altogether this ensures that the divisor r of (9) is
maintained in all solutions m(m+ 1).

There is a strong heuristics that recurrences for the solutions of the Pell equation
in the table above are of the shape

(15) mi = (4n+ 3)(mi−1 −mi−2) +mi−3.
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rooted at m1 = n the fundamental solutions (from the trivial solution, with the
exceptions as discussed above) and m2 = 4n(n+ 1), m3 = n(4n+ 3)2.

Remark 8. A “telescoping” step allows to rewrite this as inhomogeneous C-recurrences
[3, A322699]

(16) mi = (4n+ 2)mi−1 −mi−2 + 2n.

The conjectural recurrence is equivalent to the generating functions (GF)

(17)
∑
i≥0

mix
i =

nx(1 + x)

(1− x)[1− (4n+ 2)x+ x2]
.

Splitting this into partial fractions

(18) 2
∑
i≥0

mix
i = − 1

(1− x)
+

1− (2n+ 1)x

1− 2(2n+ 1)x+ x2

leads to closed form representations with Chebyshev polynomials (denoted by T̂ to
set them apart from the triangular numbers) [11, 18.12.7][3, A322699]

(19) 2mi = T̂2n+1(i)− 1

Looking at the zeros of the denominator of the generating function

(20) x2 − 2(2n+ 1)x+ 1 = 0 x = 2n+ 1± 2
√
n(n+ 1)

and an associated Binet-expansion then leads to the type of recurrence expected
for the representations of powers of units in the quadratic fields in the theory of
the continued fractions [2, 13, Prop. 4.1].

Appendix A. Maple demonstration program

The following is a Maple program (much faster versions exist) where the last line
creates a list of all solutions s up to some maximum.

#!/usr/bin/env maple

interface(quiet=true):

# @param n

# @return The n-th triangular number

A000217 := proc(n)

n*(n+1) /2 ;

end proc:

# @param n nonnegative integer

# @return the n-th oblong number

A002378 := proc(n)

n*(n+1) ;

end proc:

# @param n A nonnegative integer.

# @return squarefree part of n

A007913 := proc(n)

local f, a, d;

f := ifactors(n)[2] ;
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a := 1 ;

for d in f do

if type(op(2, d), ’odd’) then

a := a*op(1, d) ;

end if;

end do:

a;

end proc:

# squarefree part of n-th oblong nubmers

A083481 := proc(n)

A007913(n)*A007913(n+1) ;

end proc:

# Solve the Pell equation x^2-r*(2*y)^2=1

# where r is the squarefree part of the n-th oblong number

# and x= 2m+1 is odd. Return the fundamental solution [m,y,r].

Pellsolve := proc(r)

option remember;

local cf,conv,i,x,y,m ;

cf := numtheory[cfrac](sqrt(r),’periodic’) ;

for i from 1 do

conv := numtheory[nthconver](cf,i) ;

if type(denom(conv),’even’) then

x := numer(conv) ; # 2*m+1

y := denom(conv)/2 ;

if x^2-r*(2*y)^2 = 1 then

m := (x-1)/2 ;

return [m,y] ;

end if;

end if;

end do:

return [0,0] ;

end proc:

# List values of A175497 up to smax

# The values are NOT obtained in sorted order but by fixing an index

# n of the first factor T(n) and considering all T(m), m<n such

# that the product is at most smax.

# [This is a type of CRT scan order in the triangular area where m<n.]

# Also note that the occasional cases where there are two distinct

# factorization for the same square will be printed with multiplicity.

# @param smax an upper limit for the listing of the bases of the squares

# @return The list of solutions s where T(n)*T(m) = s^2, i<> j, s <= smax.

A175497 := proc(smax)

local n, pellf,pell,m,y,r,itr,twom1,ct,qform,mextra,s ,alls;

ct := 1 ;

alls := {0} ;

for n from 1 do

# because A000217(m)>=1, no more solutions are

# found if already this factor passes the maximum.

if A000217(n) > smax^2 then
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break;

end if;

r := A083481(n) ;

# The factor A000217(m) will complement r so

# n(n+1)m(m+1) is at least n(n+1)*r. Sinc the search

# is in n(n+1)m(m+1)=(2s)^2, check early that this

# is within smax: n*(n+1)*r <= 4*s^2

if n*(n+1)*r > 4*smax^2 then

continue ;

end if;

# obtain fundamental solution of (2m+1)^2-4*r*y^2=1

pellf := Pellsolve(r) ;

m := op(1,pellf) ; y := op(2,pellf) ;

# if m < n then

if true then

# consider only nontrivial solutions where m < n

if m = 0 then

print("n=",n,"no pell") ;

else

qform := 2*m+1+sqrt(4*r)*y ;

pell := qform ;

for itr from 1 do

# extract 2m+1 without sqrt(r)

twom1 := subs(sqrt(r)=0,pell) ;

mextra := (twom1-1)/2 ;

s := sqrt(n*(n+1)*mextra*(mextra+1))/2 ;

# if mextra < n and s <= smax then

if mextra <> n and s <= smax then

# n*(n+1)*m*(m+1) = n*(n+1)*r*y^2 = (2s)^2 ;

ct := ct+1 ;

printf("# n= %d m=%d r=%d itr=%d ct=%d\n",n,mextra,r,itr,ct) ;

alls := alls union {s} ;

print(alls,nops(alls)) ;

# printf("%d\n",s) ;

else

break ;

end if;

pell := expand(pell*qform) ;

end do:

end if;

end if;

end do:

alls ;

end proc:

# generate all solutions for squares less than smax^2.

A175497(40000) ;
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