Proof for: A238443 = A174973 = ¬A238542

Hartmut F. W. Höft 2014-12-01

Notations

Let $n = 2^m \times q$ where $m \ge 0$, q is odd and has the prime factorization $q = \prod_{i=1}^k p_i^{e_i}$ for primes $2 < p_1 < ... < p_k$ and exponents $e_i > 0$, for all $1 \le i \le k$. Let $q_i = \prod_{i=1}^j p_i^{e_i}$, for $0 \le j \le k$.

In this notation, the condition by David S. Metzler for numbers n to be in A174973 (see the Comment section) can be written as: $p_j \le 2^{m+1} * q_{j-1}$, for $1 \le j \le k$. (*)

Let $r_n = A003056(n)$ be the length of the n-th row of the irregular triangle A237048 of odd divisors of n. If $s < r_n$ is an odd divisor of n and $n = 2^m \cdot s \cdot t$, then A237048(n, s) = A237048(n, $2^{m+1} \cdot s) = 1$.

Claim #1 $n \notin A174973 \Rightarrow n \in A238542$

Using property (*), there is a smallest j such that $p_j > 2^{m+1} \cdot q_{j-1}$. Then for all odd divisors $s < p_j$ of n, also $2^{m+1} \cdot s < p_j$. The observation above implies that the numbers of 1's at odd indices s and even indices of form $2^{m+1} \cdot s$ are matched, and that therefore the width of the symmetric representation of $\sigma(n)$ at entry A249223(n, $2^{m+1} \cdot s)$, for some s, is zero, ensuring at least two parts, i.e. $n \in A238542$.

Claim #2 n ∈ A238542 ⇒ n ∉ A174973

Since the symmetric representation of $\sigma(n)$ has at least two parts, there is an index $u = 2^{m+1} \cdot s$ such that A249223(n, u) = $\sum_{\alpha=1}^{u} (-1)^{\alpha+1} \cdot A237048(n, \alpha) = 0$. Hence there is an odd t with $n = 2^m \cdot s \cdot t$. Since $2^{m+1} \cdot s \leq r_n$ we have $r_n < t$, i.e. an odd divisors larger than s. Suppose that x is an odd divisor larger than s. Then $2^{m+1} \cdot s \leq x$ since an entry of 1 in A238048 for each odd divisor $z < 2^{m+1} \cdot s$ must be matched by a 1 on an index of form $2^{m+1} \cdot z$. If odd number x is the next divisor larger than divisor $2^m \cdot s$ then $2^m \cdot s < 2^{m+1} \cdot s < x$, and $n \notin A174973$. Let the next divisor z larger than $2^m \cdot s$ be even, i.e., $z = 2^j \cdot y$ with $0 < j \le m$ and y odd. If $z \le 2^{m+1} \cdot s < z$, and $n \notin A174973$.