Notations

We use the definition of $T(n, k) = \left\lceil \frac{n+1}{k} - \frac{k+1}{2} \right\rceil$ and $S(n, k) = T(n, k) - T(n, k+1) = \left\lceil \frac{n+1}{k} - \frac{k+1}{2} \right\rceil - \left\lceil \frac{n+1}{k+1} - \frac{k+2}{2} \right\rceil$, for $1 \le n$ and $1 \le k \le \left\lfloor \frac{1}{2} \left(\sqrt{8n+1} - 1 \right) \right\rfloor$ = row(n) from A237591 and A237593, respectively. The numbers S(n, k) and S(n-1, k), for a fixed n, are the lengths of the legs of one half of each the two symmetric paths p(n) and p(n-1) bounding the symmetric representation of $\sigma(n)$.

Conjecture #I

The numbers n for which there is exactly one part in the symmetric representation of $\sigma(n)$ and whose width is one unit square are exactly the powers of two, A000079.

Observations

Since T(n, 1) = n, for all $1 \le n$, the two paths p(n) and p(n-1) start one unit apart. Therefore, they stay exactly one unit apart when T(n, k) = T(n-1, k), for all $2 \le k \le row(n)$, because the respective pairs of legs of the two bounding paths have the same lengths.

Claims

- (1) $T(2^n, k) = T(2^n 1, k)$ holds for all $k, n \in \mathbb{N}$ with $2 \le k \le row(2^n)$.
- (2) If for all k, $n \in \mathbb{N}$ with $2 \le k \le row(n)$, T(n, k) = T(n 1, k) holds, then $n = 2^m$ for suitable $m \in \mathbb{N}$.

Proof of Claim (1)

When k is odd, direct computation establishes $T(2^n, k) - T(2^{n}-1, k) = 0$. When k is even, suppose that $\frac{2^n}{k} = s + \frac{d}{k}$ with $s, d \in \mathbb{N}$ and $0 \le d \le k$. Case $0 \le \frac{d}{k} \le \frac{1}{2}$: then $s - 1 - \frac{k}{2} \le \frac{2^n+1}{k} - \frac{k+1}{2} \le s - \frac{k}{2}$ and $s - 1 - \frac{k}{2} \le \frac{2^n}{k} - \frac{k+1}{2} \le s - \frac{1}{k} - \frac{k}{2}$. Case $\frac{1}{2} \le \frac{d}{k} \le 1$: then $s - \frac{k}{2} \le \frac{2^n+1}{k} - \frac{k+1}{2} \le s + 1 - \frac{k}{2}$ and $s - \frac{k}{2} \le \frac{2^n}{k} - \frac{k+1}{2} \le s + 1 - \frac{k}{2}$. Case $\frac{d}{k} = \frac{1}{2}$: cannot occur, since with k = 2m we get $\frac{2^n}{k} = s + \frac{1}{2}$, that is, $2^n = m$ (2 s + 1).

Proof of Claim (2)

Suppose that $\left\lceil \frac{n+1}{k} - \frac{k+1}{2} \right\rceil = \left\lceil \frac{n}{k} - \frac{k+1}{2} \right\rceil$ holds for all $2 \le k \le row(n)$. First observe that for $n \ge 6$ there is at least one odd $k \ge 3$ in the range stated above. Therefore, if k is odd, the equality above reduces to $\left\lceil \frac{n+1}{k} \right\rceil = \left\lceil \frac{n}{k} \right\rceil$ which implies that k cannot be a divisor of n. Therefore, the only prime divisor of n less than or equal to row(n) is 2. Since $\sqrt{n} \le row(n)$ for all $n \in \mathbb{N}$, there are no other prime divisors, i.e., $n = 2^m$, for suitable $m \in \mathbb{N}$.

Conjecture #2

The numbers n for which there is exactly one part in the symmetric representation of $\sigma(n)$ and whose width is one unit square except for two units at the midpoint are exactly the perfect numbers, A000396.

Observations

An even perfect number n has the form $(2^{p}-1) 2^{p-1}$ where p is a prime and $(2^{p}-1)$ is a Mersenne prime. Direct computation establishes the following three properties:

- (a) $\operatorname{row}((2^{p}-1)2^{p-1}) = 2^{p} 1$
- (b) every divisor of $(2^{p}-1) 2^{p-1}$ less than $row((2^{p}-1) 2^{p-1})$ is a power of 2.
- (c) T($(2^{p} 1) 2^{p-1}, 2^{p} 1$) = $\left\lceil \frac{1}{2^{p} 1} \right\rceil$ = 1 and T[$(2^{p} 1) 2^{p-1} 1, 2^{p} 1$] = 0

Claims

- (1) For all even perfect numbers $n = (2^{p}-1) 2^{p-1}$, T(n, k) T(n 1, k) = 0 holds for all $2 \le k < row(n)$.
- (2) If for all k, $n \in \mathbb{N}$ such that $2 \le k < row(n)$, T(*n*, k) - T(n - 1, k) = 0 and T(n, row(n)) - T(n - 1, row(n)) = 1 then n is an even perfect number.

The proofs follow the proof patterns for conjecture #1.

Proof of (1)

Let $\frac{n}{k} = \frac{(2^{p}-1)2^{p-1}}{k} = s + \frac{d}{k}$ with s, d $\in \mathbb{N}$, and note that $0 < d < k < 2^{p} - 1$ since $2^{p} - 1$ is a prime. When k is odd, a direct computation establishes $T((2^{p} - 1)2^{p-1}, k) - T((2^{p} - 1)2^{p-1} - 1, k) = 0$. When k = 2m is even, Case $0 \le \frac{d}{k} < \frac{1}{2}$: $T((2^{p} - 1)2^{p-1} - 1, k) = \left[\frac{(2^{p}-1)2^{p-1}}{k} - \frac{k+1}{2}\right] = \Gamma s + \frac{d}{k} - m - \frac{1}{2}I = s - m + \Gamma \frac{d}{k} - \frac{1}{2}I = s - m$ $T((2^{p} - 1)2^{p-1}, k) = \left[\frac{(2^{p}-1)2^{p-1}+1}{k} - \frac{k+1}{2}\right] = \Gamma s + \frac{d+1}{k} - m - \frac{1}{2}I = s - m + \Gamma \frac{d+1}{k} - \frac{1}{2}I = s - m$ Case $\frac{1}{2} < \frac{d}{k} < 1$: $T((2^{p} - 1)2^{p-1} - 1, k) = \left[\frac{(2^{p}-1)2^{p-1}}{k} - \frac{k+1}{2}\right] = \Gamma s + \frac{d}{k} - m - \frac{1}{2}I = s - m + \Gamma \frac{d}{k} - \frac{1}{2}I = s - m + 1$ $T((2^{p} - 1)2^{p-1} - 1, k) = \left[\frac{(2^{p}-1)2^{p-1}}{k} - \frac{k+1}{2}\right] = \Gamma s + \frac{d}{k} - m - \frac{1}{2}I = s - m + \Gamma \frac{d}{k} - \frac{1}{2}I = s - m + 1$ $T((2^{p} - 1)2^{p-1}, k) = \left[\frac{(2^{p}-1)2^{p-1}}{k} - \frac{k+1}{2}\right] = \Gamma s + \frac{d}{k} - m - \frac{1}{2}I = s - m + \Gamma \frac{d}{k} - \frac{1}{2}I = s - m + 1$ $T(2^{p} - 1)2^{p-1}, k) = \left[\frac{(2^{p}-1)2^{p-1}+1}{k} - \frac{k+1}{2}I = \Gamma s + \frac{d}{k} - m - \frac{1}{2}I = s - m + \Gamma \frac{d+1}{k} - \frac{1}{2}I = s - m + 1$ $T(2^{p} - 1)2^{p-1}, k) = \left[\frac{(2^{p}-1)2^{p-1}+1}{k} - \frac{k+1}{2}I = \Gamma s + \frac{d+1}{k} - m - \frac{1}{2}I = s - m + \Gamma \frac{d+1}{k} - \frac{1}{2}I = s - m + 1$ $CASE \frac{1}{2} = \frac{d}{k}$: This accesses accessed a

This case cannot occur since $\frac{(2^p-1)2^{p-1}}{k} = s + \frac{1}{2}$ implies $(2^p - 1)2^{p-1} = m (2 s + 1)$, that is, either $(2^p - 1) \mid m$ or $(2^p - 1) \mid (2s + 1)$. The first is impossible since $2^p - 1 > m$. The second implies $2s + 1 = q (2^p - 1)$, for some odd $q \in \mathbb{N}$, which in turn implies $2^{p-1} = m q$. However, that is impossible since q is odd.

Proof of (2)

Suppose that $\left\lceil \frac{n+1}{k} - \frac{k+1}{2} \right\rceil = \left\lceil \frac{n}{k} - \frac{k+1}{2} \right\rceil$ holds for all $2 \le k < row(n)$. First observe that for $n \ge 15$ there is at least one odd $k \ge 3$ in the range stated above. Therefore, if k is odd, the claimed equality reduces to $\left\lceil \frac{n+1}{k} \right\rceil = \left\lceil \frac{n}{k} \right\rceil$ which, in turn, implies that k cannot be a divisor of n. Therefore, the onlyprime divisor of n less than row(n) is 2. Since by assumption T(n, row(n)) - T(n - 1, row(n)) = 1, Conjecture (1) implies that n is not a power of 2, and since $\sqrt{n} \le row(n)$, for all $n \in \mathbb{N}$, the only other

possible prime divisor of n is $x = \frac{1}{2} \left(\sqrt{8n+1} - 1 \right)$, that is, $n = \frac{x}{2} (x + 1)$. Therefore, $\frac{x}{2} (x + 1) = n = x$ 2^{y} , for suitable $y \in \mathbb{N}$ implies $x = 2^{y+1} - 1$. This shows $n = (2^{y+1} - 1) 2^{y}$, and since $2^{y+1} - 1$ must be a prime, n is a perfect number.