Notations

We use the definition of $T(n, k)=\left\lceil\frac{n+1}{k}-\frac{k+1}{2}\right\rceil$ and $S(n, k)=T(n, k)-T(n, k+1)=\left\lceil\frac{n+1}{k}-\frac{k+1}{2}\right\rceil-$ $\left\lceil\frac{n+1}{k+1}-\frac{k+2}{2}\right\rceil$, for $1 \leq n$ and $1 \leq k \leq\left\lfloor\frac{1}{2}(\sqrt{8 n+1}-1)\right\rfloor=\operatorname{row}(n)$ from A237591 and A237593, respectively. The numbers $S(n, k)$ and $S(n-1, k)$, for a fixed n, are the lengths of the legs of one half of each the two symmetric paths $\mathrm{p}(\mathrm{n})$ and $\mathrm{p}(\mathrm{n}-1)$ bounding the symmetric representation of $\sigma(\mathrm{n})$.

Conjecture \#|

The numbers n for which there is exactly one part in the symmetric representation of $\sigma(\mathrm{n})$ and whose width is one unit square are exactly the powers of two, A000079.

Observations

Since $T(n, 1)=n$, for all $1 \leq n$, the two paths $p(n)$ and $p(n-1)$ start one unit apart. Therefore, they stay exactly one unit apart when $T(n, k)=T(n-1, k)$, for all $2 \leq k \leq \operatorname{row}(n)$, because the respective pairs of legs of the two bounding paths have the same lengths.

Claims

(1) $\mathrm{T}\left(2^{n}, \mathrm{k}\right)=\mathrm{T}\left(2^{n}-1, k\right)$ holds for all $\mathrm{k}, \mathrm{n} \in \mathbb{N}$ with $2 \leq \mathrm{k} \leq \operatorname{row}\left(2^{n}\right)$.
(2) If for all $k, n \in \mathbb{N}$ with $2 \leq k \leq \operatorname{row}(n), T(n, k)=T(n-1, k)$ holds, then $n=2^{m}$ for suitable $\mathrm{m} \in \mathbb{N}$.

Proof of Claim (I)

When k is odd, direct computation establishes $\mathrm{T}\left(2^{n}, \mathrm{k}\right)-\mathrm{T}\left(2^{n}-1, \mathrm{k}\right)=0$.
When k is even, suppose that $\frac{2^{n}}{k}=s+\frac{d}{k}$ with $s, d \in \mathbb{N}$ and $0 \leq d<k$.
Case $0 \leq \frac{d}{k}<\frac{1}{2}$: then s-1- $\frac{k}{2}<\frac{2^{n}+1}{k}-\frac{k+1}{2}<s-\frac{k}{2}$ and $s-1-\frac{k}{2}<\frac{2^{n}}{k}-\frac{k+1}{2} \leq s-\frac{1}{k}-\frac{k}{2}$.
Case $\frac{1}{2}<\frac{d}{k}<1$: then $s-\frac{k}{2}<\frac{2^{n}+1}{k}-\frac{k+1}{2}<s+1-\frac{k}{2}$ and $s-\frac{k}{2}<\frac{2^{n}}{k}-\frac{k+1}{2}<s+1-\frac{k}{2}$.
Case $\frac{d}{k}=\frac{1}{2}$: cannot occur, since with $k=2 m$ we get $\frac{2^{n}}{k}=s+\frac{1}{2}$, that is, $2^{n}=m(2 s+1)$.

Proof of Claim (2)

Suppose that $\left\lceil\frac{n+1}{k}-\frac{k+1}{2}\right\rceil=\left\lceil\frac{n}{k}-\frac{k+1}{2}\right\rceil$ holds for all $2 \leq k \leq \operatorname{row}(n)$.
First observe that for $n \geq 6$ there is at least one odd $k \geq 3$ in the range stated above. Therefore, if k is odd, the equality above reduces to $\left\lceil\frac{n+1}{k}\right\rceil=\left\lceil\frac{n}{k}\right\rceil$ which implies that k cannot be a divisor of n. Therefore, the only prime divisor of n less than or equal to $\operatorname{row}(\mathrm{n})$ is 2 . Since $\sqrt{n} \leq \operatorname{row}(\mathrm{n})$ for all n $\in \mathbb{N}$, there are no other prime divisors, i.e., $n=2^{m}$, for suitable $m \in \mathbb{N}$.

Conjecture \#2

The numbers n for which there is exactly one part in the symmetric representation of $\sigma(\mathrm{n})$ and whose width is one unit square except for two units at the midpoint are exactly the perfect numbers, A000396.

Observations

An even perfect number n has the form $\left(2^{p}-1\right) 2^{p-1}$ where p is a prime and $\left(2^{p}-1\right)$ is a Mersenne prime. Direct computation establishes the following three properties:
(a) $\operatorname{row}\left(\left(2^{p}-1\right) 2^{p-1}\right)=2^{p}-1$
(b) every divisor of $\left(2^{p}-1\right) 2^{p-1}$ less than $\operatorname{row}\left(\left(2^{p}-1\right) 2^{p-1}\right)$ is a power of 2 .
(c) $\mathrm{T}\left(\left(2^{p}-1\right) 2^{p-1}, 2^{p}-1\right)=\left\lceil\frac{1}{2^{p}-1}\right\rceil=1$ and $\mathrm{T}\left[\left(2^{p}-1\right) 2^{p-1}-1,2^{p}-1\right]=0$

Claims

(1) For all even perfect numbers $n=\left(2^{p}-1\right) 2^{p-1}, T(n, k)-T(n-1, k)=0$ holds for all $2 \leq k<\operatorname{row}(n)$.
(2) If for all $k, n \in \mathbb{N}$ such that $2 \leq k<\operatorname{row}(n)$,
$\mathrm{T}(n, \mathrm{k})-\mathrm{T}(\mathrm{n}-1, \mathrm{k})=0$ and $\mathrm{T}(\mathrm{n}, \operatorname{row}(\mathrm{n}))-\mathrm{T}(\mathrm{n}-1, \operatorname{row}(\mathrm{n}))=1$
then n is an even perfect number.
The proofs follow the proof patterns for conjecture \#1.

Proof of (I)

Let $\frac{n}{k}=\frac{\left(2^{p}-1\right) 2^{p-1}}{k}=s+\frac{d}{k}$ with $s, d \in \mathbb{N}$, and note that $0<d<k<2^{p}-1$ since $2^{p}-1$ is a prime.
When k is odd, a direct computation establishes $T\left(\left(2^{p}-1\right) 2^{p-1}, k\right)-T\left(\left(2^{p}-1\right) 2^{p-1}-1, k\right)=0$.
When $k=2 m$ is even,
Case $0 \leq \frac{d}{k}<\frac{1}{2}$:

$$
\begin{aligned}
& \left.\left.\mathrm{T}\left(\left(2^{p}-1\right) 2^{p-1}-1, k\right)=\left\lceil\frac{\left(2^{p}-1\right) 2^{p-1}}{k}-\frac{k+1}{2}\right\rceil=\Gamma s+\frac{d}{k}-\mathrm{m}-\frac{1}{2}\right\rceil=\mathrm{s}-\mathrm{m}+\Gamma \frac{d}{k}-\frac{1}{2}\right\rceil=\mathrm{s}-\mathrm{m} \\
& \left.\left.\mathrm{~T}\left(\left(2^{p}-1\right) 2^{p-1}, \mathrm{k}\right)=\left\lceil\frac{\left(2^{p}-1\right) 2^{p-1}+1}{k}-\frac{k+1}{2}\right\rceil=\Gamma \mathrm{s}+\frac{d+1}{k}-\mathrm{m}-\frac{1}{2}\right\rceil=\mathrm{s}-\mathrm{m}+\Gamma \frac{d+1}{k}-\frac{1}{2}\right\rceil=\mathrm{s}-\mathrm{m}
\end{aligned}
$$

Case $\frac{1}{2}<\frac{d}{k}<1$:
$\left.\left.\mathrm{T}\left(\left(2^{p}-1\right) 2^{p-1}-1, \mathrm{k}\right)=\left\lceil\frac{\left(2^{p}-1\right) 2^{p-1}}{k}-\frac{k+1}{2}\right\rceil=\Gamma \mathrm{s}+\frac{d}{k}-\mathrm{m}-\frac{1}{2}\right\rceil=\mathrm{s}-\mathrm{m}+\Gamma \frac{d}{k}-\frac{1}{2}\right\rceil=\mathrm{s}-\mathrm{m}+1$
$\left.\mathrm{T}\left(\left(2^{p}-1\right) 2^{p-1}, \mathrm{k}\right)=\left\lceil\frac{\left(2^{p}-1\right) 2^{p-1}+1}{k}-\frac{k+1}{2}\right\rceil=\left\lceil\mathrm{s}+\frac{d+1}{k}-\mathrm{m}-\frac{1}{2}\right\rceil=\mathrm{s}-\mathrm{m}+\Gamma \frac{d+1}{k}-\frac{1}{2}\right\rceil=\mathrm{s}-\mathrm{m}+1$
CASE $\frac{1}{2}=\frac{d}{k}$:
This case cannot occur since $\frac{\left(2^{p}-1\right) 2^{p-1}}{k}=s+\frac{1}{2}$ implies $\left(2^{p}-1\right) 2^{p-1}=m(2 s+1)$, that is, either $\left(2^{p}-1\right) \mid m$ or $\left(2^{p}-1\right) \mid(2 s+1)$. The first is impossible since $2^{p}-1>m$.
The second implies $2 \mathrm{~s}+1=\mathrm{q}\left(2^{p}-1\right)$, for some odd $\mathrm{q} \in \mathbb{N}$, which in turn implies $2^{p-1}=\mathrm{m} q$. However, that is impossible since q is odd.

Proof of (2)

Suppose that $\left\lceil\frac{n+1}{k}-\frac{k+1}{2}\right\rceil=\left\lceil\frac{n}{k}-\frac{k+1}{2}\right\rceil$ holds for all $2 \leq k<\operatorname{row}(n)$. First observe that for $n \geq 15$ there is at least one odd $k \geq 3$ in the range stated above. Therefore, if k is odd, the claimed equality reduces to $\left\lceil\frac{n+1}{k}\right\rceil=\left\lceil\frac{n}{k}\right\rceil$ which, in turn, implies that k cannot be a divisor of n. Therefore, the onlyprime divisor of n less than row (n) is 2 . Since by assumption $T(n, \operatorname{row}(n))-T(n-1$, row $(n))=1$, Conjecture (1) implies that n is not a power of 2 , and since $\sqrt{n} \leq \operatorname{row}(n)$, for all $n \in \mathbb{N}$, the only other
possible prime divisor of n is $\mathrm{x}=\frac{1}{2}(\sqrt{8 n+1}-1)$, that is, $\mathrm{n}=\frac{x}{2}(x+1)$. Therefore, $\frac{x}{2}(x+1)=\mathrm{n}=\mathrm{x}$ 2^{y}, for suitable $y \in \mathbb{N}$ implies $x=2^{y+1}-1$. This shows $n=\left(2^{y+1}-1\right) 2^{y}$, and since $2^{y+1}-1$ must be a prime, n is a perfect number.

