Proof: A24I008 U A24IOIO == Al74905

Hartmut F. W. Höft 2015-07-01

Definition:

Let $\mathrm{s} \mid \mathrm{n}$ and $\mathrm{t} \mid \mathrm{n}$ with $\mathrm{s}<\mathrm{t}$ be a pair of divisors of n
(1) (s, t) is called a 2-pair if $\mathrm{s}<\mathrm{t}<2 \times \mathrm{s}$.
(2) (s, t) is called a minimal 2-pair if it is a 2-pair and minimal in the lexicographic ordering.
[i.e. $(a, b)<L(x, y)$ if (i) $a<x$ or (ii) $a=x$ and $b<y$]
Simple computations establish the following two observations:
(1) For every minimal 2-pair $(\mathrm{s}, \mathrm{t}), \operatorname{gcd}(\mathrm{s}, \mathrm{t})=1,1<\mathrm{s}, \mathrm{t}$ is odd and the inequality
$\mathrm{t} \leq\lfloor(\sqrt{8 \times n+1}-1) / 2\rfloor=r_{n}$ holds.
(2) Let $n \in \mathbb{N}$ such that $n=2^{m} \times q$ with $m \geq 0$ and $q \geq 1$ odd. The following two statements are equivalent:
(a) No pair of divisors $\mathrm{s}<\mathrm{t}$ of n is a 2-pair.
(b) Every pair of odd divisors $\mathrm{s}<\mathrm{t}$ of n satifies $2^{m+1} \times s<\mathrm{t}$.

Theorem

A174905 = A241008 U A241010

Proof of Al74905 \subseteq A24I008 U A24IOIO:

Let $n \in A 174905$. The link in A238443 shows a proof that $n=2^{k} \in A 241008, k \geq 0$. Therefore, we may assume that $n=2^{m} \times q$ with $m \geq 0$ and $q>1$ odd. Let $1=s_{0}<s_{1}<s_{2}<\ldots<s_{k} \leq n, k \geq 1$, be all odd divisors of n. By Observation (2), $2^{m+1} \times s_{i}<s_{i+1}$ holds for all $0 \leq i<k$. This implies that the entries of 1 's in the n-th row of triangle A237048 alternate between odd and even indices:

$$
1=s_{0}<2^{m+1}<s_{1}<2^{m+1} \times s_{1}<s_{2}<\ldots<s_{i}\left(<2^{m+1} \times s_{i}\right) \leq r_{n},
$$

up through an appropriate index i . Therefore, the widths of the regions for the symmetric representation of $\sigma(\mathrm{n})$, n -th row in triangle A249223, alternate between 1 and 0 , starting with 1 . The number of regions is even if in the n-th row of triangle A237048 the largest index with a 1 has the form $2^{m+1} \times s_{i}$ so that $\mathrm{n} \in \mathrm{A} 241008$, and odd if its has the form s_{i} so that $\mathrm{n} \in \mathrm{A} 241010$.

Proof of A24I008 U A24IOIO \subseteq AI74905:

We prove the contrapositive; so let $n \notin A 174905$ with $n=2^{m} \times q, m \geq 0, q>1$ odd, and let (s, t) be a minimal 2-pair for n. By Observation (1), $\operatorname{gcd}(\mathrm{s}, \mathrm{t})=1, \mathrm{t}$ is odd, $\mathrm{t} \leq r_{n}$, and $1<\mathrm{s}$. If $\mathrm{s}=2$ then $\mathrm{t}=3$ and the n -th row of triangle A 237048 starts $101 \ldots$ so that the width of the first region of the symmetric representation of $\sigma(\mathrm{n})$ will be 2 for its third leg, that is, $\mathrm{n} \notin \mathrm{A} 241008 \mathrm{U}$ A241010. Therefore, $\mathrm{s} \geq 3$. Let $1 \leq x<y \leq s$ be any pair of odd divisors of n. If $y<2^{m+1} \times x$ then there is $0 \leq j \leq m$ such that $2^{j} \times x<y<2^{j+1} \times x$, i.e. ($2^{j} \times x, y$) is a 2-pair, contradicting minimality of (s, t). Let $1=s_{0}<\ldots<s_{i}<\mathrm{s}$, for suitable $\mathrm{i} \geq 1$, be the odd divisors of n less than s , then:

$$
\begin{aligned}
& 1=s_{0}<2^{m+1}<s_{1}<2^{m+1} \times s_{1}<\ldots<s_{i}<2^{m+1} \times s_{i}<s<t<2 \times s \quad \text { if } s \text { is odd, and } \\
& 1=s_{0}<2^{m+1}<s_{1}<2^{m+1} \times s_{1}<\ldots<s_{i}<s=2^{k} \times u<t<2 \times s=2^{k+1} \times u \leq 2^{m+1} \times u
\end{aligned}
$$

if $s=2^{k} \times u$ with $0<k \leq m$ and $u>1$ odd. That is, odd and even indices with entries of 1 's in the n-th row of triangle A237048 alternate between 1 and 0 starting with 1 , until s when it is odd, and until s_{i}
when s is even. In either case, there are two successive 1 's at odd indices $s \& t$ and $s_{i} \& t$, respectively, since even indices with entries of 1 have the form $2^{m+1} \times x$ for some odd x. That means that the entry at index t in the n-th row of triangle A249223 will have a value of 2 , so that $n \notin A 241008 u$ A241010.

