%I #17 Sep 08 2022 08:45:51
%S 0,531,3697884,25752063645,179337367525896,1248905401698276099,
%T 8697377038089427227540,60568532444349369514312461,
%U 421799251245071971208244750864,2937409925102148763144846930704435,20456122296612112741468742817180934476
%N y-values in the solution to x^2-43*y^2=1.
%C The corresponding values of x of this Pell equation are in A174753.
%H Vincenzo Librandi, <a href="/A174780/b174780.txt">Table of n, a(n) for n = 1..200</a>
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (6964,-1).
%F a(n) = 6964*a(n-1)-a(n-2) with a(1)=0, a(2)=531.
%F G.f.: 531*x^2/(1-6964*x+x^2).
%t LinearRecurrence[{6964,-1},{0,531},20] (* _Harvey P. Dale_, Nov 21 2011 *)
%o (Magma) I:=[0,531]; [n le 2 select I[n] else 6964*Self(n-1)-Self(n-2): n in [1..15]];
%Y Cf. A174753.
%K nonn,easy
%O 1,2
%A _Vincenzo Librandi_, Apr 15 2010
%E More terms from Harvey P. Dale, Nov 21 2011