%I #17 Oct 25 2022 20:06:02
%S 0,10,1020,104030,10610040,1082120050,110365635060,11256212656070,
%T 1148023325284080,117087122966320090,11941738519239365100,
%U 1217940241839448920110,124217962929104550486120,12669014278526824700664130,1292115238446807014917255140,131783085307295788696859360150
%N y-values in the solution to x^2 - 26*y^2 = 1.
%C The corresponding values of x of this Pell equation are in A099397.
%H Vincenzo Librandi, <a href="/A174768/b174768.txt">Table of n, a(n) for n = 1..200</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (102,-1).
%F a(n) = 102*a(n-1)-a(n-2) with a(1)=0, a(2)=10.
%F G.f.: 10*x^2/(1-102*x+x^2).
%F a(n+1) = A041041(2*n-1). - _Michael Somos_, Oct 25 2022
%t LinearRecurrence[{102,-1}, {0,10}, 30]
%t a[ n_] := Fibonacci[2*n-2, 10]; (* _Michael Somos_, Oct 25 2022 *)
%o (Magma) I:=[0, 10]; [n le 2 select I[n] else 102*Self(n-1)-Self(n-2): n in [1..20]];
%Y Cf. A041041, A099397.
%K nonn,easy
%O 1,2
%A _Vincenzo Librandi_, Apr 14 2010