

A174721


Integers z that cannot be largest number in the group of consecutive positive integers, sum of whom is average of twin prime pairs.


0



1, 2, 4, 10, 13, 20, 31, 33, 48, 55, 64, 66, 70, 82, 98, 103, 241, 280
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Consider a group of consecutive positive Integers : a+b+...+y+z = Average of twin prime pairs. Number 4:: 1+2+3+4=10, 2+3+4=9, 3+4=7. Total 3 possible combination; all 3 sums are Not averages of twin prime pairs; number 4 part of this sequence 1+2+3=6, 3+4+5=12 == averages of twin prime pairs, numbers 3 and 5 are Not in this sequence.


LINKS

Table of n, a(n) for n=1..18.


MATHEMATICA

mx=2500; mz=mx+(mx+1); lst={}; Do[p=a; Do[p+=n; If[PrimeQ[p1]&&PrimeQ[p+1], AppendTo[lst, n]], {n, a+1, mx+1}], {a, 1, mx}]; z=Union@lst; Complement[Range[mx], z]


CROSSREFS

Cf. A014574, A174716, A174717
Sequence in context: A180427 A127591 A100912 * A026224 A034233 A056718
Adjacent sequences: A174718 A174719 A174720 * A174722 A174723 A174724


KEYWORD

nonn


AUTHOR

Vladimir Joseph Stephan Orlovsky, Mar 28 2010


STATUS

approved



