login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A174547 Coefficients of minimal polynomials with roots a(n)=(1 + Prime[n+1]^(1/n))/2: p(x,n)=If[n == 0, 1, MinimalPolynomial[(1 + Prime[n+1]^(1/n))/2, x]] 0

%I

%S 1,-2,1,-1,-1,1,-4,3,-6,4,-5,-4,12,-16,8,-7,5,-20,40,-40,16,-4,-3,15,

%T -40,60,-48,16,-10,7,-42,140,-280,336,-224,64,-11,-8,56,-224,560,-896,

%U 896,-512,128,-15,9,-72,336,-1008,2016,-2688,2304,-1152,256,-15,-10,90

%N Coefficients of minimal polynomials with roots a(n)=(1 + Prime[n+1]^(1/n))/2: p(x,n)=If[n == 0, 1, MinimalPolynomial[(1 + Prime[n+1]^(1/n))/2, x]]

%C Row sums are:

%C {1, -1, -1, -3, -5, -6, -4, -9, -11, -14, -15,...}

%F p(x,n)=If[n == 0, 1, MinimalPolynomial[(1 + Prime[n+1]^(1/n))/2, x]];

%F t(n,m)=Coefficients(p(x,n))

%e {1},

%e {-2, 1},

%e {-1, -1, 1},

%e {-4, 3, -6, 4},

%e {-5, -4, 12, -16, 8},

%e {-7, 5, -20, 40, -40, 16},

%e {-4, -3, 15, -40, 60, -48, 16},

%e {-10, 7, -42, 140, -280, 336, -224, 64},

%e {-11, -8, 56, -224, 560, -896, 896, -512, 128},

%e {-15, 9, -72, 336, -1008, 2016, -2688, 2304, -1152, 256},

%e {-15, -10, 90, -480, 1680, -4032, 6720, -7680, 5760, -2560, 512}

%t << NumberTheory`AlgebraicNumberFields`

%t p[x_, n_] := If[n == 0, 1, MinimalPolynomial[(1 + Prime[n + 1]^(1/n))/2, x]];

%t Table[CoefficientList[p[x, n], x], {n, 0, 10}];

%t Flatten[%]

%K sign,tabl,uned

%O 0,2

%A _Roger L. Bagula_, Mar 22 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 00:32 EDT 2021. Contains 347493 sequences. (Running on oeis4.)