login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173853 The smallest distance d>1 such that A033308(n+d)= A033308(n). 0

%I

%S 12,6,24,6,1,1,2,6,2,10,7,4,2,3,48,14,2,4,5,6,2,10,2,4,50,8,2,10,49,

%T 10,2,4,51,1,2,11,2,4,7,4,2,10,53,1,13,9,2,3,1,3,3,9,3,3,9,3,102,15,1,

%U 2,5,3,47,6,2,3,1,3,3,12,3,13,3,3,54,18,2,3,1,3,51,6,3,3,6,3,51,2,3,3,12,3,13,5,2,54,1,2,3,1,3,3,12,3,3,12,4,1,12,3,1,18,1,2,8,1,2,18,1,2,6,3,1,2,3,13,15,3,48,3,3,3,12,3,48,8,3,3,15,3,48,14,3,3,6,3,1,12,3,3,11,3,45,3

%N The smallest distance d>1 such that A033308(n+d)= A033308(n).

%e A033308: 2,3,5,7,1,1,1,3,1,7,1,9,2,3,2,9,3,1,3,7,4,1,4,3,4,7,5,3.

%e n=1: A033308[1]=2=A033308[13], m=13, hence a(1)=13-1=12;

%e n=3: A033308[3]=5=A033308[27], m=27, hence a(3)=27-3=24.

%t FL=Flatten[IntegerDigits/@Prime[Range[1000]]];Le=Length@FL;re=Reap[Do[a=FL[[k1]];

%t Do[If[FL[[k2]]==a,Sow[{k1,k2-k1,k2}];Break[]],{k2,k1+1,Le}],{k1,200}]][[2,1]];#[[2]]&/@re

%Y A033308 Decimal expansion of Copeland-Erdos constant: concatenate primes.

%K nonn,base

%O 1,1

%A _Zak Seidov_, Nov 26 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 18 21:20 EST 2020. Contains 332028 sequences. (Running on oeis4.)