login
a(n) = a(n-2) + a(n-3) - [a(n-3)/4] - [a(n-4)/2] - [a(n-5)/4].
0

%I #7 Mar 12 2014 16:37:14

%S 1,1,1,2,2,3,4,4,6,6,7,8,8,10,10,11,12,12,14,14,15,16,16,18,18,19,20,

%T 20,22,22,23,24,24,26,26,27,28,28,30,30,31,32,32,34,34,35,36,36,38,38,

%U 39

%N a(n) = a(n-2) + a(n-3) - [a(n-3)/4] - [a(n-4)/2] - [a(n-5)/4].

%C The limiting ratio a(n+1)/a(n) goes very near one in two alternating modes.

%F a(n)=a(n-2)+a(n-3)-Floor[a(n-3)/4]-Floor[a(n-4)/2]-Floor[a(n-5)/4]

%t f[-3] = 0; f[-2] = 0; f[-1] = 0; f[0] = 1; f[1] = 1;

%t f[n_] := f[n] = f[n - 2] + f[n - 3] - Floor[f[n - 3]/

%t 4] - Floor[f[n - 4]/2] - Floor[f[n - 5]/4]

%t Table[f[n], {n, 0, 50}]

%K nonn

%O 0,4

%A _Roger L. Bagula_, Nov 23 2010