STRUCTURE OF THE FLORETION GROUP

RICHARD J. MATHAR

ABSTRACT. Some characterization of Dement’s Floretion Group of order 32,
isomorphous to (C2 x Dg) A Co, number 49 in GAP’s small group library, is
given in terms of conjugancy classes, normal subgroups, and relations to the
Quaternion Group Q5.

1. SCOPE

Dement defines a vector space of floretions [5] with unit vectors taken as the
elements of a non-abelian group of order 32 (the Floretion Group) that is defined
based on a “right-” and a “left-handed” instance of the Quaternion Group and a
commutative multiplication between hybrid elements that are of mixed origin with
respect to these sub-groups. It is group 49 in the Besche-Eick table [2, 1, 6] and will
henceforth be baptized G33. It is group 32/42 in the Thomas-Wood enumeration
[11], T'saq in [8], and apparently this index carries over as 32.42 in [7] and G42
in [14]. Tt might also appear as T22, a transitive group of order 8, in a work on
permutation groups [3, Table 8A].

In the following we shall ignore that Dement’s associated algebra (over the
ring/field of Q, so far, see [12] for an application over C) reduces the vector space
to 16 dimensions by annihilating a negative sign that is part of the group element’s
name (see below) with the multiplier —1 of the ring. So with respect of the group
properties that will be discussed below, these signs are just an aid to memorization
of the Cayley table. The situation is equivalent to the Quaternion Group with its
8 elements and 4 base vectors.

2. BASIC DEFINITIONS

2.1. Multiplication Table, Cycles. The 32 elements of the group (g; = €€ the
unit element) are given descriptive names in Table 1. The multiplication table of
the Floretion group is reprinted in Tabs. 2-5. The anti-symmetric upper left corner

of Table 2 shows a copy of the non-Abelian Quaternion Group with base elements
“—

e€, i, j,and k in g; to gs and the standard products
9 <9 e e
= = i

(1) 2=Tl=%’=-%; (-@)P=%; ij=4k Jk=

Another copy with reversal of the sense of the arrows (the opposite “handedness”)

=
is with &€, _i), 7, k , that is, g1, g5 and g9 to g14. The products of elements with
mixed senses of the arrows are defined from there assuming that the elements of
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TABLE 1. Indices of the group elements, their names, and orders.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
@ 9 5 k -2 -9 -3 -k i 4 kK —i —j -k W 9
1 4 4 4 2 4 4 4 4 4 4 4 4 4 2 2
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Rownd — — — — Eand Eaand
kk i ik gi gk ki kj —a —j55 —kk —i5 —ik —ji —jk —ki —kj
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

this mixed origin commute and that the algebraic product of the signs of the factors
carries over to the name of the product:

2

it =91 =14 1j=71=1j; ji=147=7ji; 1
The products of elements where one or both factors are already of the mixed type
are then defined enforcing the associative rule.

Remark 1. The ordering of the elements from 1 to 32 is entirely my own and
others are in use. My principle of ordering is to start with the quaternion base,
then to complete the quaternion group in a block, then to follow up with the second
quaternion block, then moving on to the mized products.

The orders of the elements are listed in Table 1, and a number of small cyclic
subgroups of order 2 or 4 is defined by the cycles. The cycle structure in Fig. 1
contains loops with g; to gi4 of the two quaternion groups in the upper part, and
the remaining “mixed” elements g15 to gss in the lower part.

2.2. Conjugacy Classes. The 17 conjugacy classes are C; = {g1}, C2 = {92, 96 },
C3 = {93,97}, Ca = {94,938}, C5 = {95}, Co = {99,912}, C10 = {910,913}, C11 =
{911, 14}, C15 = {915,924}, Ci6 = {916,925}, C17 = {917,926}, C18 = {918,927},
Cio = {919,928}, C20 = {920,920}, Co1 = {921,930}, Co2 = {922,931}, and Co3 =
{923,932}, indexed by the smallest index of their group members. So with the
exception of €€ and —ee which form classes of their own, each two elements with
the two signed versions of otherwise the same name build a class.
The class multiplication coefficients are

(3) GC = niG,

(4) GG = niCy,

(5) CiC; = 201 +2Cs, (i#1,5),

(6) CGC; = 4Ck, (i#j, 4,J#1,5),

where n. denotes the number of elements in class C., and where the index k follows
immediately from the group multiplication table by multiplication of two represen-
tatives of C; and C;.

Remark 2. A cyclic index relation is valid for the cases of (6): if C;C; = 4Cy, then
also C;C, = 4C;. (The proof follows from considering a representative g;g; = gk,
and multiplying from the left with gi_1 to give g; = gi_lgk. Note that the inverses are
gi_1 = g; fori=1,5 ori > 15, and flip the sign in the name in all remaining cases.
Anyway, gi_1 is in the same class as g;, so g; = gi_lgk involves three members of
the same three classes as gig; = gi.)

(=j)=—ij;...



TABLE 2. Multiplication Table, upper left corner
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TABLE 3. Multiplication Table, upper right corner
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TABLE 4. Multiplication Table, lower left corner
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TABLE 5. Multiplication Table, lower right corner
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FLORETION GROUP
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FIGURE 1. Cycle graph of the Floretion Group. In the upper part,
the six loops are to be closed switching signs while passing through
the nodes g1 or gs.
TABLE 6. Characters of the 17 representations.
c 1 2 3 4 5 9 10 11 15 16 17 18 19 20 21 22 23
i 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
i 131 -1-1 11 1 1 1 -1 -1 1 1 -1 -1 -1 -1
i -1 1 -1 1 1 1 1 -1 1 -1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 1 -1 -1 -1 1 -1 1 1 -1 1 1 -1
1 -1 1 -1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 1
i 31 -1 -1 1 1 -1 -1 1 1 1 -1 -1 -1 1 -1 1
1 -1 -1 11 -1 -1 1 1 1 1 1 -1 1 -1 -1 -1
i 11 1 1 -1 -1 1 -1 -1 1 -1 1 -1 1 -1 -1
1 -1 1 -1 1 -1 1 -1 1 1 1 -1 1 -1 -1 1 -1
i 11 1 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 1 -1
i 11 -1 -1 1 -1 1 -1 -1 -1 1 1 -1 1 1 1 -1
i 11 1 1 -1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1
1 -1 -1 1 1 -1 1 -1 1 -1 -1 -1 1 1 1 -1 1
1 -1 -1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 1 1
11 -1 -1 1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 1
1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 1
4 0 0O O 4 0 0 O O 0O O O O 0 O0 0 o

There are 16 irreducible representations of dimension 1 and 1 with dimension 4

(Table 6).

The inner automorphism group of G35 is Cay x Cy x Cy x Cy [11, Group 16/6].
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3. DERIVED PROPERTIES
3.1. Subgroups.

Definition 1. (Small Groups) Gi denotes the j-th abstract group of order d of the
small group library [6].

Definition 2. (Normal Subgroups of G33) Hé’j’k"" denotes a normal (invariant)
subgroup of order d of the Floretion Group G43 containing all elements of the classes
Ci, Cs5 Ci, Cj, Cy, elc., that is, C1, Cs and the classes indicated by the upper indices.

Definition 3. (Other Subgroups of G33) Mfljk denotes a not normal subgroup
of order d of the Floretion Group G353 containing the elements g1, gi, g;, gk etc.,
that is, g1 and the elements indicated by the upper indices.

Besides the improper subgroup M; = {¢1}, we identify the following subgroups
from Figure 1 (all cyclic and therefore Abelian):

e The commutator sup-group He = {g1, g5} (set of all commutators g~ h~tgh
of pair-wise elements g and h) contains the two elements e€ and — ¢, iso-
morphous to Cy = G3, the cyclic group of order 2.

e 6 normal subgroups of order 4 (index 8) given by Hi = {g1,9s,9i,9; '} <
Cy = G, i €{2,3,4,9,10,11}, containing the cycle generated by any of
the 6 elements of the two Quaternion groups.

e 18 subgroups of order 2 (index 16) given by Mi « Cy, i > 15, containing
the unit element and one of the “mixed” elements. None of them is a
normal subgroup of G39.

By merging the elements of pairs of any of these subgroups we generate 62 more
subgroups:

e The two normal, non-Abelian Quaternion subgroups of order 8 isomorphous
to Qs = G&, H3®" =Cy +C5 +Cy + C3 4+ Cy and HP'OM =€) +C5 4 Co +
Cio +C11.

e 9 normal Abelian subgroups of order 8 by merging two of the aforemen-
tioned subgroups of order 4 with different senses of the arrows, and adding
the complementary two “mixed” elements: H29 21018 p2 119 Hg,g,zo
H3 10,16 H3 11,21 H4 9,22 H4 1023 H§,11,17
Gz.

e 18 normal non-Abelian subgroups of order 8 by merging one of cyclic sub-

groups of order 4 with two cyclic subgroups of order 2: H§ 15,20 ° 16,18

8
4,19,21 16,21 17,2 18,1 10,15,1 10,17,22 10,2 21 11,15,1
HS 9, H9 6, H9 7,23 H9 8,19 H 0,15,19 H 0,17, H 0,20, H 5, 8

)

, isomorphous to Cy x Cy =

H:n 16, 207 §§1 22, 23’ qu 18, 23’ %82 16, 237 Hs 17, 217 Hg ;20,22 H3 15,22 H‘% 17,19 7
isomorphous to Dg = G§.

e 9 normal Abelian subgroups of order 4 by merging pairs within the afore-
mentioned 18 subgroups of order 2 with the rule that both sign variants
are combined: Hj < Cy x Cy = G7, i > 15.

e 24 Abelian subgroups combining the unit with three “mixed” elements:
M15:25:26 1 r18.20.26 1 r1523,30 18,2122 202832 3 r17.18,29 1 r24,30,32

4 4 4

21,2 24 16,1 1 19,20,2 22,2 26,27,2 15,1 17 17,20,2

19,22, 25 21,27, 1 15,21 2 16,22,2 25,2 1 19,2 2 1 1
M2 001 RV it el ¥ 8M 8310 € 92982 8008

4 )
17,24, 25 16,24, 26 23,28, 29
M;" , My~ ,or My~

, isomorphous to C’g x Cs.
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Remark 3. Proposition 2.5 in [4] concerning the number of subgroups of order 4
is not correct because some of the 24 subgroups mentioned above are missed.

After a second round of mergers we find more normal subgroups [13]

2,3,4,11,17,19,21 2,3,4,9,15,20,22 2,3,4,10,16,18,2

e non-Abelian of order 16: Hyz b HI1920 0 pr2.849,15,20.22 1 pr2.8.4,10,16,18,23

2,9,10,11,15,18,19 3,9,10,11,16,20,21 491011172225
H , HY , Hy

02) ANCy = G

1som0rphous to (Cy x

2,10,17,18,20,21,22 772,11,16,19,20,22,23 772,9,15,16,17,21,23
e non-Abelian of order 16: Hig , Hig ,  Hig”
3,11,15,18,21,22,23  773,9,17,18.19,20,23 773,10,15,16,17,19,22 774,9,16,18,19,21,22 174,10,15,19,20,21,23
Hyg s Hg CHyy ,Hig JHyg ™

11,15,16,17,18,20
Hig 1som0rph0us to Cg X Dg = GL.

182192 17192023 7/17.18,20 1716,19,22 115,21,23
° and Abelian of order 8: Hg™ , Hg™ , Hg" , Hg™” , Hg

15,16,17
Hg™ , isomorphous to Cy X C’2 x Cy = Gg.

)

Remark 4. The associated abstract groups are uncovered with GAP/ [6] by defining
a g := FreeGroup() with d — 1 generators, where d is the order of the group,
feeding the entire Cayley table as d*> — 1 generators into the group, and executing
StructureDescription(g).

Two examples of normal series are

10 10,17,22 2,10,17,18,20,21,22 49

(7) H,< H" < Hg <Hj; aG3
2,10,18 2,3,4,10,16,18,23

(8) H, < H;" < Hg <Hig aG3Y

According to the first Sylow Theorem, each group H;" is member of at least one of
such series.

3.2. Factorizations. The Floretion Group does not have representations as a di-
rect product of subgroups, but as semi-direct products. One example for each of
the various types of the sub-groups is:

49 3,11,15,18,21,22,23 26
9) G32 - H16 A M2
2,3,4,10,16,18,2
= EEP4I0161823 \ 15

2,3,4 15,25,26
HZ¥ A My

2,17,21 19,2 2
H 2N A M2

)
) =
12) _ 2915 , 3p1820.26
= 8 4
)
) HL) 16,17 M18 21,22

The first of these equations means G433 < G1g A Co. This is helpful because a 4-
dimensional representation is induced from the tabulatlon of the eight 1-dimensional
and two 2-dimensional representations of G1§ [11, Group 16/6]. (The dimensionality
of the induced rep. is the product of the dimensionality of the rep. of the subgroup
times the index of the subgroup [9, §4]). In particular, besides the unit matrix for

)
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g1, GAP4 [6] proposes for the 5 generators gio, g3gs *go, g5 ~go, 91195 - and g5 >

100 0 00 0 -1
010 0 00 -1 0
(15) =190 10 | P9l o1 0 o |’
0001 10 0 0
10 0 0 0 -1 0 0
01 0 0 1 0 0 0
(16) P22 = 0 0 —1 0 ) P12 = 0 0 0 -1 3
00 0 -1 0 0 1 0
1 0 0 0 10 0 0
0 -1 0 0 0 -1 0 0
A0 po=1yo o 1 0 [ P 0 0o -1 o0
0 0 0 —1 0 0 0 -1

Definition 4. (Set of 2 x 2 unimodular integer base matrices) 11 = ( (1) (1) )

(0 1 (1 0 (0 -1
le(l O>T3:<O _1>7'2:<1 0)

We deduce the other elements by reverse look-up in the multiplication table,

using 712 = 732 =Ty, 7'22 = —Ty1, T1T2 = T3, T1T3 = T2, T2T3 = T1, T3To = —T1:
(18)
7 0 0 7 0 —77 To 0
p1=<0 TI>;p2=<T2 0>;p3:(n 0 >;p4=(0 _Tz);
(19) Pjta = —pj, J=1,...,4,
(20) Po = ( 70TQ —072 );plo = ( 31 7071 )3]711 = ( g 7(;3 );
(21) pj+s =—pj, Jj=9,...,11,

_ 0 77 \. [ 7T 0 ) . 0 —-7m ).
(22) P15 = < 7 0 >7p16 = < 0 7 >7p17 = < —n 0 >7
o —T3 0 . o T1 0 . o 0 T2 .
(23) P18 = ( R >7p19 = ( 0 —m )»pzo = < 0 )7

o —173 0 . . —Tr 0 R 0 T3 .
(24) P21 = ( 0 —r >,p22 = ( 0 ),pzs = ( 0 >,
(25) Dj+o = —Dpj, J=15,...23.

Remark 5. The |G33| = 32 4 x 4 matrices of this matriz representation of G43
exhaust all possible matrices subject to the conditions: (i) They are block-diagonal or
block-anti-diagonal containing only 2 x 2 submatrices of the form 7;, j = 1,1,2,3.
(i) The two indices of the T along the diagonal or anti-diagonal are the same.
(Proof: there are 8 different signed +71; which can be placed in either the upper
left or upper right corner for a total of 16, and keeping or switching a sign for the
element in the opposite corner introduces two times as many elements.)

Remark 6. This matriz representation is “faithful” in the sense that multiplication
of the matriz by —1 yields the representation of the element with a switched sign in
its name.
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The GAP function GeneratorsSmallest computes a generating set of only 4
elements, g2, g3, g9 and g1o. If these elements are used as generators, the Cayley
graph of Fig. 2 is obtained: Each of the 32 elements is a node (shown by its index
in the table). Nodes are connected by edges if one can obtain one from the other
by multiplication with a generator; the color of the edge indicates which generator
is in use. All edges are directed because none of these four generators it its own
inverse.

FIGURE 2. The Cayley graph from the four generators gs (blue),
go (red), g2 (green), and gio (brown).

APPENDIX A. THE GROUP (g X Qs

The direct product Qg x Qg = G23° is connected to the Floretion group because
the Factor Group G23°/{(g1,91),(gs5,95)} is isomorphous to G33—as mentioned
earlier by Pieper-Seier [4].

Remark 7. The 64 elements of Gg3° are named (gi,g;), 1 < i,j, < 8, using pairs
of elements of Table 1.
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The non-Abelian GZ3}° has 4 minimal generators, p-Rank 2. The character table

can be obtained from the 156th group of order 64 in the Schaps compilation [10].

10.

11.

12.

13.

14.
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