|
|
A172411
|
|
Numbers n such that 2^n+9 and 2^n+27 are prime.
|
|
0
|
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
No further terms between 10 and 5000. - R. J. Mathar, Feb 07 2010
No further terms to 100000. Expected number of remaining terms: (zeta(2) - 1 - 1/4 - ... - 1/100000^2)/log^2 2 ~= 0.00002. - Charles R Greathouse IV, Mar 25 2010
|
|
LINKS
|
Table of n, a(n) for n=1..4.
|
|
FORMULA
|
A057196 INTERSECT A157007 - R. J. Mathar, Feb 07 2010
|
|
EXAMPLE
|
a(1)=1 because 2^1+3^2=11 and 2^1+3^3=29 are prime.
|
|
MATHEMATICA
|
Select[Range[10], AllTrue[2^#+{9, 27}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 28 2016 *)
|
|
PROG
|
(PARI) is(n)=isprime(2^n+9) && isprime(2^n+27) \\ Charles R Greathouse IV, Sep 06 2016
|
|
CROSSREFS
|
Sequence in context: A188948 A334295 A083460 * A264784 A306679 A125974
Adjacent sequences: A172408 A172409 A172410 * A172412 A172413 A172414
|
|
KEYWORD
|
nonn,less
|
|
AUTHOR
|
Juri-Stepan Gerasimov, Feb 02 2010
|
|
STATUS
|
approved
|
|
|
|