The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A171970 Integer part of the height of an equilateral triangle with side length n. 6

%I

%S 0,1,2,3,4,5,6,6,7,8,9,10,11,12,12,13,14,15,16,17,18,19,19,20,21,22,

%T 23,24,25,25,26,27,28,29,30,31,32,32,33,34,35,36,37,38,38,39,40,41,42,

%U 43,44,45,45,46,47,48,49,50,51,51,52,53,54,55,56,57,58,58,59,60,61,62,63

%N Integer part of the height of an equilateral triangle with side length n.

%D Mohammad K. Azarian, A Trigonometric Characterization of Equilateral Triangle, Problem 336, Mathematics and Computer Education, Vol. 31, No. 1, Winter 1997, p. 96. Solution published in Vol. 32, No. 1, Winter 1998, pp. 84-85.

%D Mohammad K. Azarian, Equating Distances and Altitude in an Equilateral Triangle, Problem 316, Mathematics and Computer Education, Vol. 28, No. 3, Fall 1994, p. 337. Solution published in Vol. 29, No. 3, Fall 1995, pp. 324-325.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EquilateralTriangle.html">Equilateral Triangle</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Equilateral_triangle">Equilateral triangle</a>

%F a(n) = floor(n*sqrt(3)/2).

%F a(n) = floor(A022838(n)/2).

%F a(n)*A004526(n) <= A171971(n)

%F a(n)*A005843(n) <= A171972(n).

%o (PARI) a(n)=sqrtint(3*n^2\4) \\ _Charles R Greathouse IV_, Jan 06 2013

%Y Beatty sequence of A010527.

%Y Cf. A022838, A004526, A005843, A171971, A171972.

%K nonn,easy

%O 1,3

%A _Reinhard Zumkeller_, Jan 20 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 30 20:19 EDT 2020. Contains 337440 sequences. (Running on oeis4.)