login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The sequence of coefficients of a polynomial recursion: p(x,n)=If[Mod[n, 2] == 0, (x + 1)*p(x, n - 1), (x^2 + (2*n)*x + 1)^Floor[n/2]]
0

%I #3 Oct 09 2012 03:53:22

%S 1,1,1,1,6,1,1,7,7,1,1,20,102,20,1,1,21,122,122,21,1,1,42,591,2828,

%T 591,42,1,1,43,633,3419,3419,633,43,1,1,72,1948,23544,108870,23544,

%U 1948,72,1,1,73,2020,25492,132414,132414,25492,2020,73,1,1,110,4845,106920

%N The sequence of coefficients of a polynomial recursion: p(x,n)=If[Mod[n, 2] == 0, (x + 1)*p(x, n - 1), (x^2 + (2*n)*x + 1)^Floor[n/2]]

%C Row sums are:

%C {1, 2, 8, 16, 144, 288, 4096, 8192, 160000, 320000, 7962624, 15925248...}.

%F p(x,n)=If[Mod[n, 2] == 0, (x + 1)*p(x, n - 1), (x^2 + (2*n)*x + 1)^Floor[n/2]]

%e {1},

%e {1, 1},

%e {1, 6, 1},

%e {1, 7, 7, 1},

%e {1, 20, 102, 20, 1},

%e {1, 21, 122, 122, 21, 1},

%e {1, 42, 591, 2828, 591, 42, 1},

%e {1, 43, 633, 3419, 3419, 633, 43, 1},

%e {1, 72, 1948, 23544, 108870, 23544, 1948, 72, 1},

%e {1, 73, 2020, 25492, 132414, 132414, 25492, 2020, 73, 1},

%e {1, 110, 4845, 106920, 1185810, 5367252, 1185810, 106920, 4845, 110, 1},

%e {1, 111, 4955, 111765, 1292730, 6553062, 6553062, 1292730, 111765, 4955, 111, 1}

%t Clear[p, n, x, a]

%t p[x, 1] := 1;

%t p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^2 + (2*n)*x + 1)^Floor[n/2]];

%t a = Table[CoefficientList[p[x, n], x], {n, 1, 12}];

%t Flatten[a]

%Y Cf. A051159 , A169623, A007318, A171142, A171143

%K nonn,tabl

%O 1,5

%A _Roger L. Bagula_ and _Gary W. Adamson_, Dec 04 2009