login
Number of sensed unrooted maps with n edges.
7

%I #23 Apr 07 2022 05:34:07

%S 2,5,20,107,870,9436,122840,1863359,32019826,613981447,12989756316,

%T 300559406027,7550660328494,204687564072918,5955893472990664,

%U 185158932576089787,6125200100394894738,214837724735760642773

%N Number of sensed unrooted maps with n edges.

%C Also number of "dessins d'enfants" with n edges. - _Mark van Hoeij_, Jan 23 2011

%H Antonio Breda d'Azevedo, Alexander Mednykh and Roman Nedela, <a href="/A170946/b170946.txt">Table of n, a(n) for n = 1..30</a>

%H Antonio Breda d'Azevedo, Alexander Mednykh and Roman Nedela, <a href="https://doi.org/10.1016/j.disc.2009.11.017">Enumeration of maps regardless of genus: Geometric approach</a>, Discrete Mathematics, Volume 310, 2010, Pages 1184-1203.

%H N. M. Adrianov, N. Ya. Amburg, V. A. Dremov, Yu. A. Levitskaya, E. M. Kreines, Yu. Yu. Kochetkov, V. F. Nasretdinova and G. B. Shabat, <a href="http://arxiv.org/abs/0710.2658">Catalog of dessins d'enfants with <= 4 edges</a>, arXiv:0710.2658 [math.AG], 2007.

%H R. J. Mathar, <a href="http://vixra.org/abs/1901.0148">Feynman diagrams of the QED vacuum polarization</a>, vixra:1901.0148 (2019), Section V. Different from a(7) on.

%H R. de Mello Koch, S. Ramgoolam, <a href="https://arxiv.org/abs/1110.4858">Strings from Feynman graph counting: without large N</a>, arXiv:1110.4858 [hep-th], 2012, (D.10). Different from a(7) on.

%Y Cf. A268558 (inv. Euler Transf.)

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Feb 21 2010