The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A170934 a(n) = b(n) + b(n+1) + 2, where b() = A000930(). 1
 4, 4, 5, 7, 9, 12, 17, 24, 34, 49, 71, 103, 150, 219, 320, 468, 685, 1003, 1469, 2152, 3153, 4620, 6770, 9921, 14539, 21307, 31226, 45763, 67068, 98292, 144053, 211119, 309409, 453460, 664577, 973984, 1427442, 2092017, 3065999, 4493439, 6585454, 9651451 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Z. Skupien, Sparse Hamiltonian 2-decompositions together with exact count of numerous Hamiltonian cycles, Discr. Math., 309 (2009), 6382-6390. Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-1). FORMULA From Colin Barker, Jul 25 2013: (Start) a(n) = 2*a(n-1)-a(n-2)+a(n-3)-a(n-4). G.f.: -(3*x^3-x^2+4*x-4) / ((x-1)*(x^3+x-1)). (End) a(n) = a(n-1) + a(n-3) - 2, for n > 2. - Greg Dresden, Feb 09 2020 MATHEMATICA CoefficientList[Series[-(3*x^3 - x^2 + 4*x - 4)/((x - 1)*(x^3 + x - 1)), {x, 0, 50}], x] (* G. C. Greubel, Apr 26 2017 *) LinearRecurrence[{2, -1, 1, -1}, {4, 4, 5, 7}, 50] (* Harvey P. Dale, Jul 10 2020 *) PROG (PARI) x='x+O('x^50); Vec(-(3*x^3 - x^2 + 4*x - 4)/((x - 1)*(x^3 + x - 1))) \\ G. C. Greubel, Apr 26 2017 CROSSREFS Sequence in context: A137903 A091349 A103483 * A079999 A058619 A198999 Adjacent sequences: A170931 A170932 A170933 * A170935 A170936 A170937 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Feb 10 2010 EXTENSIONS More terms from Colin Barker, Jul 25 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 23 03:47 EDT 2024. Contains 374544 sequences. (Running on oeis4.)