login
Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^44 = I.
0

%I #8 Mar 29 2018 10:08:49

%S 1,30,870,25230,731670,21218430,615334470,17844699630,517496289270,

%T 15007392388830,435214379276070,12621216999006030,366015292971174870,

%U 10614443496164071230,307818861388758065670,8926746980273983904430

%N Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^44 = I.

%C The initial terms coincide with those of A170749, although the two sequences are eventually different.

%C Computed with MAGMA using commands similar to those used to compute A154638.

%H <a href="/index/Rec#order_44">Index entries for linear recurrences with constant coefficients</a>, signature (28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, -406).

%F G.f. (t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 +

%F 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 +

%F 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 +

%F 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 +

%F 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4

%F + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^44 - 28*t^43 - 28*t^42 - 28*t^41 -

%F 28*t^40 - 28*t^39 - 28*t^38 - 28*t^37 - 28*t^36 - 28*t^35 - 28*t^34 -

%F 28*t^33 - 28*t^32 - 28*t^31 - 28*t^30 - 28*t^29 - 28*t^28 - 28*t^27 -

%F 28*t^26 - 28*t^25 - 28*t^24 - 28*t^23 - 28*t^22 - 28*t^21 - 28*t^20 -

%F 28*t^19 - 28*t^18 - 28*t^17 - 28*t^16 - 28*t^15 - 28*t^14 - 28*t^13 -

%F 28*t^12 - 28*t^11 - 28*t^10 - 28*t^9 - 28*t^8 - 28*t^7 - 28*t^6 - 28*t^5

%F - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1)

%t coxG[{44,406,-28}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Mar 29 2018 *)

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009