login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A169727 a(n) = 3*(2^(n+1)-2)*(2^(n+1)-1) + 1. 8

%I

%S 1,19,127,631,2791,11719,48007,194311,781831,3136519,12564487,

%T 50294791,201252871,805158919,3220930567,12884312071,51538427911,

%U 206156070919,824629002247,3298525446151,13194120658951,52776520384519,211106157035527,844424779137031

%N a(n) = 3*(2^(n+1)-2)*(2^(n+1)-1) + 1.

%C A subsequence of the centered hexagonal numbers A003215.

%H Vincenzo Librandi, <a href="/A169727/b169727.txt">Table of n, a(n) for n = 0..1000</a>

%H Alice V. Kleeva, <a href="/A169727/a169727a.jpg">Grid for this sequence</a>

%H Alice V. Kleeva, <a href="/A169727/a169727b.jpg">Illustration of initial terms</a>

%H Robert Munafo, <a href="http://www.mrob.com/pub/math/seq-a169720.html">Sequence A169720, and two others by Alice V. Kleeva</a>

%H Robert Munafo, <a href="/A169720/a169720.pdf">Sequence A169720, and two others by Alice V. Kleeva</a> [Cached copy, in pdf format, included with permission]

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-14,8).

%F From _R. J. Mathar_, Apr 26 2010: (Start)

%F a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3).

%F G.f.: -(1+12*x+8*x^2) / ( (x-1)*(2*x-1)*(4*x-1) ). (End)

%t CoefficientList[Series[-(1 + 12*x + 8*x^2)/((x-1)*(2*x-1)*(4*x-1)), {x, 0, 30}], x](* _Vincenzo Librandi_, Dec 03 2012 *)

%t LinearRecurrence[{7,-14,8},{1,19,127},30] (* _Harvey P. Dale_, Jan 15 2015 *)

%o (MAGMA) I:=[1, 19, 127]; [n le 3 select I[n] else 7*Self(n-1) -14*Self(n-2) +8*Self(n-3): n in [1..30]]; // _Vincenzo Librandi_, Dec 03 2012

%Y Cf. A169720-A169726, A000225.

%K nonn,easy

%O 0,2

%A Alice V. Kleeva (alice27353(AT)gmail.com), Jan 19 2010

%E G.f. adapted to the offset by _Vincenzo Librandi_, Dec 03 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 23:56 EST 2018. Contains 299595 sequences. (Running on oeis4.)