login
The classical Lie superfactorial of type Dr ~ SO(2r): When a Lie group G is simply laced, the classical Lie superfactorial sf_G is the product of s! where s belongs to the multiset E of exponents of G. Here G=Dr.
3

%I #23 Apr 19 2024 09:22:02

%S 12,4320,87091200,158018273280000,37845502865178624000000,

%T 1649653134695488211543654400000000,

%U 17257672962657131355854388575443353600000000000

%N The classical Lie superfactorial of type Dr ~ SO(2r): When a Lie group G is simply laced, the classical Lie superfactorial sf_G is the product of s! where s belongs to the multiset E of exponents of G. Here G=Dr.

%C To every simple Lie group G one can associate both a quantum and a classical superfactorial of type G.

%C The classical Lie superfactorial of type G, denoted sf_G, is defined as the classical limit (q-->1) of the quantum Weyl denominator of G.

%C If G is simply laced (ADE Dynkin diagrams), i.e., Ar,Dr,E6,E7,E8 cases, the integer sf_G is the product of s!, where s runs over the multiset of exponents of G.

%C The usual superfactorial r --> sf[r] is recovered as the Lie superfactorial r --> sf_{Ar} of type Ar [nonascii characters here] SU(r+1), sequence A000178.

%C The given sequence is the Lie superfactorial of type Dr: r --> sf_{Dr} = (g/2)! Product_{s in 1,3,5,... g-1} s! , with g = 2r-2.

%C If G is exceptional of type E, the Lie superfactorial does not define an infinite sequence (see A169667).

%C If G is not simply laced, i.e., (Br, Cr, G2, F4) cases, the Lie superfactorial is also simply related to the product of factorials s! where s belongs to the multiset E of exponents of G. See sequences A169668.

%C The classical Lie superfactorial of type G enters the asymptotic expression giving the global dimension of a monoidal category of type G at level k, when k is large.

%C Call r the rank of G, gamma its Coxeter number, Delta the determinant of the fundamental quadratic form, and dim(G) its dimension, the asymptotic expression reads : k^dim(G) / ((2 pi)^(r gamma) Delta (sf_G)^2 ).

%H Robert Coquereaux, <a href="http://arxiv.org/abs/1003.2589">Global dimensions for Lie groups at level k and their conformally exceptional quantum subgroups</a>, arxiv:1003.2589 [math.QA], 2010.

%H Robert Coquereaux, <a href="http://arxiv.org/abs/1209.6621">Quantum McKay correspondence and global dimensions for fusion and module-categories associated with Lie groups</a>, arXiv preprint arXiv:1209.6621 [math.QA], 2012-2013. - From _N. J. A. Sloane_, Dec 29 2012

%F From _Vaclav Kotesovec_, Apr 19 2024: (Start)

%F a(n) = sqrt(BarnesG(2*n)*Gamma(n)) / 2^((n-1)/2).

%F a(n) ~ 2^(n^2 - n + 17/24) * Pi^(n/2) * n^(n^2 - n/2 - 1/24) / (sqrt(A) * exp(3*n^2/2 - n/2 - 1/24)), where A is the Glaisher-Kinkelin constant A074962.

%F (End)

%t sfD[r_] := Factorial[(2 r - 2)/2] Product[Factorial[s], {s, 1, (2 r - 2) - 1, 2}]

%t Table[Sqrt[BarnesG[2*n]*Gamma[n]] / 2^((n-1)/2), {n,3,10}] (* _Vaclav Kotesovec_, Apr 19 2024 *)

%t Table[Det[Table[i^(2*j), {i, 1, n-1}, {j, 1, n-1}]], {n, 3, 10}] (* _Vaclav Kotesovec_, Apr 19 2024 *)

%Y A000178 gives sf_G for G=Ar=SU(r+1). A169667 gives sf_G for G=E6, E7, E8. A169668 describes sf_G for non-simply laced series.

%K easy,nonn

%O 3,1

%A _Robert Coquereaux_, Apr 05 2010