login
A169427
Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^32 = I.
0
1, 30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388830, 435214379276070, 12621216999006030, 366015292971174870, 10614443496164071230, 307818861388758065670, 8926746980273983904430
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170749, although the two sequences are eventually different.
First disagreement is at index 32, the difference is 435. - Klaus Brockhaus, Jun 27 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, -406).
FORMULA
G.f.: (t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^32 - 28*t^31 - 28*t^30 - 28*t^29 - 28*t^28 - 28*t^27 - 28*t^26 - 28*t^25 - 28*t^24 - 28*t^23 - 28*t^22 - 28*t^21 - 28*t^20 - 28*t^19 - 28*t^18 - 28*t^17 - 28*t^16 - 28*t^15 - 28*t^14 - 28*t^13 - 28*t^12 - 28*t^11 - 28*t^10 - 28*t^9 - 28*t^8 - 28*t^7 - 28*t^6 - 28*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1).
G.f.: (1+2*sum(k=1..31, x^k)+x^32)/(1-28*sum(k=1..31, x^k)+406*x^32).
CROSSREFS
Cf. A170749 (G.f.: (1+x)/(1-29*x) ).
Sequence in context: A169283 A169331 A169379 * A169475 A169523 A169571
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved