Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 May 08 2018 02:39:49
%S 1,8,56,392,2744,19208,134456,941192,6588344,46118408,322828856,
%T 2259801992,15818613944,110730297608,775112083256,5425784582792,
%U 37980492079544,265863444556808,1861044111897656,13027308783283592
%N Number of reduced words of length n in Coxeter group on 8 generators S_i with relations (S_i)^2 = (S_i S_j)^32 = I.
%C The initial terms coincide with those of A003950, although the two sequences are eventually different.
%C First disagreement is at index 32, the difference is 28. - _Klaus Brockhaus_, Jun 26 2011
%C Computed with Magma using commands similar to those used to compute A154638.
%H Vincenzo Librandi, <a href="/A169405/b169405.txt">Table of n, a(n) for n = 0..500</a>
%H <a href="/index/Rec#order_32">Index entries for linear recurrences with constant coefficients</a>, signature (6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, -21).
%F G.f.: (t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(21*t^32 - 6*t^31 - 6*t^30 - 6*t^29 - 6*t^28 - 6*t^27 - 6*t^26 - 6*t^25 - 6*t^24 - 6*t^23 - 6*t^22 - 6*t^21 - 6*t^20 - 6*t^19 - 6*t^18 - 6*t^17 - 6*t^16 - 6*t^15 - 6*t^14 - 6*t^13 - 6*t^12 - 6*t^11 - 6*t^10 - 6*t^9 - 6*t^8 - 6*t^7 - 6*t^6 - 6*t^5 - 6*t^4 - 6*t^3 - 6*t^2 - 6*t + 1).
%F G.f.: (1+2*sum(k=1..31,x^k)+x^32)/(1-6*sum(k=1..31,x^k)+21*x^32).
%t With[{num=Total[2t^Range[31]]+t^32+1,den=Total[-6 t^Range[31]]+21t^32+1}, CoefficientList[Series[num/den,{t,0,30}],t]] (* _Harvey P. Dale_, Jan 27 2012 *)
%o (PARI) x='x+O('x^66); /* that many terms */
%o Vec((1+2*sum(k=1,31,x^k)+x^32)/(1-6*sum(k=1,31,x^k)+21*x^32)) /* show terms */
%o /* _Joerg Arndt_, Jun 26 2011 */
%Y Cf. A003950 (G.f.: (1+x)/(1-7*x) ).
%K nonn,easy
%O 0,2
%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009