login
Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^23 = I.
0

%I #10 Apr 25 2018 10:26:51

%S 1,15,210,2940,41160,576240,8067360,112943040,1581202560,22136835840,

%T 309915701760,4338819824640,60743477544960,850408685629440,

%U 11905721598812160,166680102383370240,2333521433367183360

%N Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^23 = I.

%C The initial terms coincide with those of A170734, although the two sequences are eventually different.

%C First disagreement at index 23: a(23) = 245984670950337316588093335, A170734(23) = 245984670950337316588093440. - Klaus Brockhaus, Apr 19 2011

%C Computed with MAGMA using commands similar to those used to compute A154638.

%H <a href="/index/Rec#order_23">Index entries for linear recurrences with constant coefficients</a>, signature (13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, -91).

%F G.f.: (t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^23 - 13*t^22 - 13*t^21 - 13*t^20 - 13*t^19 - 13*t^18 - 13*t^17 - 13*t^16 - 13*t^15 - 13*t^14 - 13*t^13 - 13*t^12 - 13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1).

%t coxG[{23,91,-13}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Apr 25 2018 *)

%Y Cf. A170734 (G.f.: (1+x)/(1-14*x)).

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009