OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003953, although the two sequences are eventually different.
First disagreement at index 19: a(19) = 10999999999999999945, A003953(19) = 11000000000000000000. - Klaus Brockhaus, Mar 25 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..500
Index entries for linear recurrences with constant coefficients, signature (9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, -45).
FORMULA
G.f.: (t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^19 - 9*t^18 - 9*t^17 - 9*t^16 - 9*t^15 - 9*t^14 - 9*t^13 - 9*t^12 - 9*t^11 - 9*t^10 - 9*t^9 - 9*t^8 - 9*t^7 - 9*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 - 9*t + 1).
MATHEMATICA
CoefficientList[Series[(t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^19 - 9*t^18 - 9*t^17 - 9*t^16 - 9*t^15 - 9*t^14 - 9*t^13 - 9*t^12 - 9*t^11 - 9*t^10 - 9*t^9 - 9*t^8 - 9*t^7 - 9*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 - 9*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 12 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved