login
A168709
Number of reduced words of length n in Coxeter group on 32 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.
1
1, 32, 992, 30752, 953312, 29552672, 916132832, 28400117792, 880403651552, 27292513198112, 846067909141472, 26228105183385632, 813071260684954592, 25205209081233592352, 781361481518241362912, 24222205927065482250272
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170751, although the two sequences are eventually different.
First disagreement at index 17: a(17) = 23277539895909928442510896, A170751(17) = 23277539895909928442511392. - Klaus Brockhaus, Mar 28 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, -465).
FORMULA
G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(465*t^17 - 30*t^16 - 30*t^15 - 30*t^14 - 30*t^13 - 30*t^12 - 30*t^11 - 30*t^10 - 30*t^9 - 30*t^8 - 30*t^7 - 30*t^6 - 30*t^5 - 30*t^4 - 30*t^3 - 30*t^2 - 30*t + 1).
MATHEMATICA
CoefficientList[Series[(t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(465*t^17 - 30*t^16 - 30*t^15 - 30*t^14 - 30*t^13 - 30*t^12 - 30*t^11 - 30*t^10 - 30*t^9 - 30*t^8 - 30*t^7 - 30*t^6 - 30*t^5 - 30*t^4 - 30*t^3 - 30*t^2 - 30*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 05 2016 *)
coxG[{17, 465, -30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Oct 30 2023 *)
CROSSREFS
Cf. A170751 (G.f.: (1+x)/(1-31*x)).
Sequence in context: A167757 A063818 A167947 * A168757 A168805 A168853
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved