OFFSET
1,1
COMMENTS
Subsequence of A168545: p such that p//29 = m^2.
(1) Conjecture: the sequence is infinite.
(2) 29 = prime(10) is the smallest prime which can appear as the least significant digits of perfect squares.
(3) The set of possible least significant digit pairs of m is {23, 27, 73 or 77}.
(4) Only four 2-digit primes are least significant digits of perfect squares: 29, 41, 61 and 89.
(5) There are no squares of the form p//41 = m^2 because only even numbers (no primes) concatenated with 41 are squares.
REFERENCES
Peter Bundschuh, Einfuehrung in die Zahlentheorie, Springer, 4. Auflage 1998.
Leonard E. Dickson, History of the Theory of numbers, vol. I, Dover Publications 2005.
Theo Kempermann, Zahlentheoretische Kostproben, Harri Deutsch, 2. aktualisierte Auflage 2005.
LINKS
David Corneth, Table of n, a(n) for n = 1..10000 (* first 150 terms from Harvey P. Dale *)
EXAMPLE
a(1) = 5 = prime(3) because 529=23^2 and 23=prime(9).
7 = prime(4) is not in the sequence because 729=27^2 and 27=3^3 is not a prime.
a(2) = 53 = prime(16) because 5329=73^2 and 73=prime(21).
a(3) = 3329 = prime(469) because 332929=577^2 and 577=prime(106).
MATHEMATICA
Select[Prime[Range[120000]], PrimeQ[Sqrt[100#+29]]&] (* Harvey P. Dale, Jan 15 2019 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Nov 30 2009
EXTENSIONS
Keyword:base added by R. J. Mathar, Dec 05 2009
STATUS
approved