The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A168458 a(n) = 7 + 10*floor((n-1)/2). 1
 7, 7, 17, 17, 27, 27, 37, 37, 47, 47, 57, 57, 67, 67, 77, 77, 87, 87, 97, 97, 107, 107, 117, 117, 127, 127, 137, 137, 147, 147, 157, 157, 167, 167, 177, 177, 187, 187, 197, 197, 207, 207, 217, 217, 227, 227, 237, 237, 247, 247, 257, 257, 267, 267, 277, 277, 287 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,1,-1). FORMULA a(n) = 10*n - a(n-1) - 6, with n>1, a(1)=7. G.f.: x*(7 + 3*x^2)/((1+x)*(x-1)^2). - Vincenzo Librandi, Sep 19 2013 a(n) = a(n-1) +a(n-2) -a(n-3). - Vincenzo Librandi, Sep 19 2013 From G. C. Greubel, Jul 23 2016: (Start) a(n) = (10*n - 5*(-1)^n - 1)/2. E.g.f.: (1/2)*(-5 + 6*exp(x) + (10*x - 1)*exp(2*x))*exp(-x). (End) MAPLE A168458:=n->7 + 10*floor((n-1)/2); seq(A168458(k), k=1..100); # Wesley Ivan Hurt, Nov 08 2013 MATHEMATICA Table[7 + 10 Floor[(n - 1)/2], {n, 70}] (* or *) CoefficientList[Series[(7 + 3 x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 19 2013 *) LinearRecurrence[{1, 1, -1}, {7, 7, 17}, 60] (* Harvey P. Dale, Apr 12 2018 *) PROG (Magma) [7+10*Floor((n-1)/2): n in [1..70]]; // Vincenzo Librandi Sep 19 2013 CROSSREFS Cf. A017353. Sequence in context: A198439 A100635 A292084 * A165138 A196395 A358380 Adjacent sequences: A168455 A168456 A168457 * A168459 A168460 A168461 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Nov 26 2009 EXTENSIONS New definition by Vincenzo Librandi, Sep 19 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 14:44 EST 2023. Contains 359923 sequences. (Running on oeis4.)