login
A168208
Irregular table of the number of electrons of the n-th element of the PSE in atomic shells, read by rows.
7
1, 2, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 8, 1, 2, 8, 2, 2, 8, 3, 2, 8, 4, 2, 8, 5, 2, 8, 6, 2, 8, 7, 2, 8, 8, 2, 8, 8, 1, 2, 8, 8, 2, 2, 8, 9, 2, 2, 8, 10, 2, 2, 8, 11, 2, 2, 8, 13, 1, 2, 8, 13, 2, 2, 8, 14, 2, 2, 8, 15, 2, 2, 8, 16, 2, 2, 8, 18, 1, 2, 8, 18, 2, 2, 8, 18, 3, 2, 8, 18, 4, 2
OFFSET
1,2
COMMENTS
For the n-th element in the periodic system of elements, row n of the table shows the occupancy of the K-shell, then the L-shell, then the M-shell etc.
Row sums are A000027(n). A093907(c) is the maximum number that may appear in column c.
How are rows defined when the n-th element has more than one possible electron configuration? For example, element no. 28 (Nickel) has two electron configurations, namely 2, 8, 16, 2 and 2, 8, 17, 1, and it is disputed which of them is the ground state configuration of Nickel. - Felix Fröhlich, Jun 02 2019
EXAMPLE
From Felix Fröhlich, Jun 02 2019: (Start)
Irregular table starts as follows, where Z denotes the atomic number:
Z | Element name | Electrons per shell
-----------------------------------------
1 | Hydrogen | 1
2 | Helium | 2
3 | Lithium | 2, 1
4 | Beryllium | 2, 2
5 | Boron | 2, 3
6 | Carbon | 2, 4
7 | Nitrogen | 2, 5
8 | Oxygen | 2, 6
9 | Fluorine | 2, 7
10 | Neon | 2, 8
11 | Sodium | 2, 8, 1
12 | Magnesium | 2, 8, 2
13 | Aluminium | 2, 8, 3
14 | Silicon | 2, 8, 4
15 | Phosphorus | 2, 8, 5
16 | Sulfur | 2, 8, 6
17 | Chlorine | 2, 8, 7
18 | Argon | 2, 8, 8
19 | Potassium | 2, 8, 8, 1
20 | Calcium | 2, 8, 8, 2
21 | Scandium | 2, 8, 9, 2
22 | Titanium | 2, 8, 10, 2
23 | Vanadium | 2, 8, 11, 2
24 | Chromium | 2, 8, 13, 1
25 | Manganese | 2, 8, 13, 2
26 | Iron | 2, 8, 14, 2
27 | Cobalt | 2, 8, 15, 2
(End)
CROSSREFS
Cf. A173642.
Sequence in context: A316841 A000003 A234398 * A333003 A352072 A365067
KEYWORD
nonn,less,tabf
AUTHOR
Paul Curtz, Nov 20 2009
EXTENSIONS
Redefined as an irregular table by R. J. Mathar, Dec 05 2009
Edited by Felix Fröhlich, Jun 02 2019
STATUS
approved