This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A168198 a(n) = 3*n - a(n-1) + 1 with n > 1, a(1)=1. 2
 1, 6, 4, 9, 7, 12, 10, 15, 13, 18, 16, 21, 19, 24, 22, 27, 25, 30, 28, 33, 31, 36, 34, 39, 37, 42, 40, 45, 43, 48, 46, 51, 49, 54, 52, 57, 55, 60, 58, 63, 61, 66, 64, 69, 67, 72, 70, 75, 73, 78, 76, 81, 79, 84, 82, 87, 85, 90, 88, 93, 91, 96, 94, 99, 97, 102, 100, 105, 103, 108 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Alternately add 5 and subtract 2, starting with 1. Apparently this was a test question: Find the next two numbers after 1,6,4,9,7,12,10. - N. J. A. Sloane, Dec 18 2010 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 D. Klein, What do the NAEP math tests really measure?, Notices Amer. Math. Soc., 58 (No. 1, 2011), 53-55. Index entries for linear recurrences with constant coefficients, signature (1,1,-1). FORMULA a(n) = (6*n + 5 + 7*(-1)^n)/4. - Jon E. Schoenfield, Jun 24 2010 G.f.: x*(1+5*x-3*x^2)/((1+x)(1-x)^2). - Bruno Berselli, Feb 28 2012 EXAMPLE From Muniru A Asiru, Mar 20 2018: (Start) For n = 2, a(2) = 3*2 - a[2-1] + 1 = 6 - a + 1 = 6 - 1 + 1 = 6. For n = 3, a(3) = 3*3 - a[3-1] + 1 = 9 - a + 1 = 9 - 6 + 1 = 4. For n = 4, a(4) = 3*4 - a[4-1] + 1 = 12 - a + 1 = 12 - 4 + 1 = 9. ... (End) MAPLE a:= proc(n) option remember: if n = 1 then 1 elif n >= 2 then 3*n - procname(n-1) + 1 fi; end: seq(a(n), n = 1..70); # Muniru A Asiru, Mar 20 2018 MATHEMATICA LinearRecurrence[{1, 1, -1}, {1, 6, 4}, 100] (* Vincenzo Librandi, Feb 28 2012 *) PROG (PARI) a(n)=(6*n+5+7*(-1)^n)/4 \\ Charles R Greathouse IV, Jan 11 2012 (MAGMA) I:=[1, 6, 4]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..60]]; // Vincenzo Librandi, Feb 28 2012 (GAP) a:=;; for n in [2..80] do a[n]:=3*n-a[n-1]+1; od; a; # Muniru A Asiru, Mar 20 2018 CROSSREFS Cf. A084964, A103889, A168199, A168200. Sequence in context: A086034 A191622 A021943 * A177898 A082209 A264770 Adjacent sequences:  A168195 A168196 A168197 * A168199 A168200 A168201 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Nov 20 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 08:54 EDT 2019. Contains 327995 sequences. (Running on oeis4.)