The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A168082 Fibonacci 11-step numbers. 3
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2047, 4093, 8184, 16364, 32720, 65424, 130816, 261568, 523008, 1045760, 2091008, 4180992, 8359937, 16715781, 33423378, 66830392, 133628064, 267190704, 534250592, 1068239616 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,13 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Martin Burtscher, Igor Szczyrba, and RafaĆ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5. Kai Wang, Identities for generalized enneanacci numbers, Generalized Fibonacci Sequences (2020). Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1,1,1,1,1,1,1). FORMULA From Joerg Arndt, Sep 22 2020: (Start) a(n) = Sum_{k=1..11} a(n-k). G.f.: x^11/(1 - Sum_{k=1..11} x^k ). a(n) = 2*a(n-1) - a(n-12).  (End) Another form of the g.f. f: f(z) = (z^(k-1)-z^(k))/(1-2*z+z^(k+1)) with k=11. a(n) = Sum_((-1)^i*binomial(n-10-11*i,i)*2^(n-10-12*i), i=0..floor((n-10)/12))-Sum_((-1)^i*binomial(n-11-11*i,i)*2^(n-11-12*i), i=0..floor((n-11)/12)) with Sum_(alpha(i),i=m..n) = 0 for m>n. - Richard Choulet, Feb 22 2010 MAPLE a:= proc(n) option remember; `if`(n<11, 0,       `if`(n=11, 1, add(a(n-j), j=1..11)))     end: seq(a(n), n=1..50);  # Alois P. Heinz, Sep 23 2020 MATHEMATICA With[{nn=11}, LinearRecurrence[Table[1, {nn}], Join[Table[0, {nn-1}], {1}], 50]] (* Harvey P. Dale, Aug 17 2013 *) CROSSREFS Sequence in context: A145117 A172320 A234592 * A295081 A227843 A271482 Adjacent sequences:  A168079 A168080 A168081 * A168083 A168084 A168085 KEYWORD nonn,easy AUTHOR Vladimir Joseph Stephan Orlovsky, Nov 18 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 09:05 EDT 2021. Contains 347664 sequences. (Running on oeis4.)