login
A167938
Number of reduced words of length n in Coxeter group on 24 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
7
1, 24, 552, 12696, 292008, 6716184, 154472232, 3552861336, 81715810728, 1879463646744, 43227663875112, 994236269127576, 22867434189934248, 525950986368487704, 12096872686475217192, 278228071788929995416
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170743, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,-253).
FORMULA
G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 253*t^16 - 22*t^15 - 22*t^14 - 22*t^13 - 22*t^12 - 22*t^11 - 22*t^10 - 22*t^9 - 22*t^8 - 22*t^7 - 22*t^6 - 22*t^5 - 22*t^4 - 22*t^3 - 22*t^2 - 22*t + 1).
From G. C. Greubel, Sep 09 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 23*t + 275*t^16 - 253*t^17).
a(n) = 22*Sum_{j=1..15} a(n-j) - 253*a(n-16). (End)
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^16)/(1-23*t+275*t^16-253*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 09 2023 *)
coxG[{16, 253, -22}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Mar 18 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-23*x+275*x^16-253*x^17) )); // G. C. Greubel, Sep 09 2023
(SageMath)
def A167938_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-23*x+275*x^16-253*x^17) ).list()
A167938_list(40) # G. C. Greubel, Sep 09 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved