%I #6 Jun 17 2016 00:09:19
%S 1,6,-1,20,0,3,56,28,98,-15,144,192,1080,-48,105,352,880,7568,2024,
%T 6534,-945,832,3328,40976,31616,132444,-8112,10395,1920,11200,187488,
%U 274480,1593960,286900,972162,-135135,4352,34816,761600,1784320,13962848
%N A triangle related to the a(n) formulas of the rows of the ED3 array A167572.
%C The a(n) formulas given below correspond to the first ten rows of the ED3 array A167572.
%C The recurrence relations of the a(n) formulas for the left hand triangle columns, see the cross-references below, lead to the sequences A013609, A003148, A081277 and A079628.
%e Row 1: a(n) = 1.
%e Row 2: a(n) = 6*n - 1.
%e Row 3: a(n) = 20*n^2 + 0*n + 3.
%e Row 4: a(n) = 56*n^3 + 28*n^2 + 98*n - 15.
%e Row 5: a(n) = 144*n^4 + 192*n^3 + 1080*n^2 - 48*n + 105.
%e Row 6: a(n) = 352*n^5 + 880*n^4 + 7568*n^3 + 2024*n^2 + 6534*n - 945.
%e Row 7: a(n) = 832*n^6 + 3328*n^5 + 40976*n^4 + 31616*n^3 + 132444*n^2 - 8112*n + 10395.
%e Row 8: a(n) = 1920*n^7 + 11200*n^6 + 187488*n^5 + 274480*n^4 + 1593960*n^3 + 286900*n^2 + 972162*n - 135135.
%e Row 9: a(n) = 4352*n^8 + 34816*n^7 + 761600*n^6 + 1784320*n^5 + 13962848*n^4 + 7874944*n^3 + 29641200*n^2 - 2080800*n + 2027025.
%e Row 10: a(n) = 9728*n^9 + 102144*n^8 + 2830848*n^7 + 9645312*n^6 + 98382912*n^5 + 106720416*n^4 + 522283552*n^3 + 69265488*n^2 + 255468870*n - 34459425.
%Y A167572 is the ED3 array.
%Y A000012, A016969, A167573, A167574 and A167575 equal the first five rows of the ED3 array.
%Y A014480, A167581, A167582, A168305 and A168306 equal the first five left hand triangle columns.
%Y A001147 equals the first right hand triangle column.
%Y A167576 equals the row sums.
%Y Cf. A013609, A003148, A079628 and A081277.
%K sign,tabl
%O 1,2
%A _Johannes W. Meijer_, Nov 10 2009
%E Comment and links added by _Johannes W. Meijer_, Nov 23 2009