%I #5 Jun 16 2016 23:24:34
%S 1473,8169,26529,66345,140865,266793,464289,756969,1171905,1739625,
%T 2494113,3472809,4716609,6269865,8180385,10499433,13281729,16585449,
%U 20472225,25007145,30258753,36299049,43203489,51050985,59923905
%N The fifth row of the ED3 array A167572.
%H G. C. Greubel, <a href="/A167575/b167575.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F a(n) = 144*n^4 + 192*n^3 + 1080*n^2 - 48*n + 105.
%F G.f.: (105*z^4 + 660*z^3 + 414*z^2 + 804*z + 1473)/(1-z)^5.
%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - _G. C. Greubel_, Jun 16 2016
%t LinearRecurrence[{5, -10, 10, -5, 1}, {1473, 8169, 26529, 66345, 140865}, 100] (* _G. C. Greubel_, Jun 16 2016 *)
%Y Equals the fifth row of the ED3 array A167572.
%K easy,nonn
%O 1,1
%A _Johannes W. Meijer_, Nov 10 2009