login
The fourth row of the ED3 array A167572.
3

%I #5 Jun 16 2016 23:24:28

%S 167,741,2043,4409,8175,13677,21251,31233,43959,59765,78987,101961,

%T 129023,160509,196755,238097,284871,337413,396059,461145,533007,

%U 611981,698403,792609,894935,1005717,1125291,1253993,1392159,1540125

%N The fourth row of the ED3 array A167572.

%H G. C. Greubel, <a href="/A167574/b167574.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(n) = 56*n^3 + 28*n^2 + 98*n - 15.

%F G.f.: (15*z^3 + 81*z^2 + 73*z + 167)/(1-z)^4.

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - _G. C. Greubel_, Jun 16 2016

%t LinearRecurrence[{4,-6,4,-1},{167, 741, 2043, 4409},100] (* _G. C. Greubel_, Jun 16 2016 *)

%Y Equals the fourth row of the ED3 array A167572.

%K easy,nonn

%O 1,1

%A _Johannes W. Meijer_, Nov 10 2009