login
The third row of the ED3 array A167572.
3

%I #7 Jun 17 2017 00:15:10

%S 23,83,183,323,503,723,983,1283,1623,2003,2423,2883,3383,3923,4503,

%T 5123,5783,6483,7223,8003,8823,9683,10583,11523,12503,13523,14583,

%U 15683,16823,18003,19223,20483,21783,23123,24503,25923,27383,28883,30423

%N The third row of the ED3 array A167572.

%H G. C. Greubel, <a href="/A167573/b167573.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 20*n^2 + 3.

%F G.f.: (3*z^2 + 14*z + 23)/(1-z)^3.

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - _G. C. Greubel_, Jun 16 2016

%t Table[20*n^2 + 3, {n, 1, 100] (* or *) LinearRecurrence[{3,-3,1},{23, 83, 183}, 100] (* _G. C. Greubel_, Jun 16 2016 *)

%o (PARI) a(n)=20*n^2+3 \\ _Charles R Greathouse IV_, Jun 17 2017

%Y Equals the third row of the ED3 array A167572.

%K easy,nonn

%O 1,1

%A _Johannes W. Meijer_, Nov 10 2009