%I #11 Dec 11 2020 15:48:50
%S 1,14,182,2366,30758,399854,5198102,67575326,878479238,11420230094,
%T 148462991222,1930018885886,25090245516518,326173191714643,
%U 4240251492289176,55123269399744000,716602502196473256
%N Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.
%C The initial terms coincide with those of A170733, although the two sequences are eventually different.
%C Computed with MAGMA using commands similar to those used to compute A154638.
%H G. C. Greubel, <a href="/A166969/b166969.txt">Table of n, a(n) for n = 0..500</a>
%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, -78).
%F G.f.: (t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(78*t^13 - 12*t^12 - 12*t^11 - 12*t^10 - 12*t^9 - 12*t^8 - 12*t^7 - 12*t^6 - 12*t^5 - 12*t^4 - 12*t^3 - 12*t^2 - 12*t + 1).
%t CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(78*t^13 - 12*t^12 - 12*t^11 - 12*t^10 - 12*t^9 - 12*t^8 - 12*t^7 - 12*t^6 - 12*t^5 - 12*t^4 - 12*t^3 - 12*t^2 - 12*t + 1), {t, 0, 50}], t] (* _G. C. Greubel_, May 29 2016 *)
%t coxG[{13,78,-12}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Dec 11 2020 *)
%K nonn
%O 0,2
%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009